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Zusammenfassung

Die Magnetresonanztomographie (MRT) in den Neurowissenschaften ist eine der
leistungsfahigsten nicht-invasiven Methoden zur Messung des menschlichen Gehirns. In
Neuroimaging-Studien wird die MRT eingesetzt, um strukturelle und funktionelle
Eigenschaften des Gehirns zu erfassen. In den computergestiitzten Neurowissenschaften
werden bei der Ganzhirnmodellierung MRT-Daten als Grundlage verwendet, so dass Forscher
die simulierte Ganzhirndynamik in silico untersuchen kdnnen, indem sie die freien Parameter
von Ganzhirnmodellen erforschen. Allerdings gibt es fur die MRT-Datenverarbeitung keine
standardisierte Methode, da es keine Referenzdaten des menschlichen Gehirns gibt. Die
Verwendung unterschiedlicher Softwares und Datenverarbeitungsparameter kann daher zu
widersprichlichen Ergebnissen und unterschiedlichen Schlussfolgerungen in verschiedenen
Studien fiihren. AuBerdem sind die Auswirkungen der Datenverarbeitung auf Ganzhirnmodelle
noch nicht eindeutig geklart. Daher habe ich drei Studien durchgefuhrt, die variierende Anséatze
zur MRT-Datenverarbeitung fir die Modellierung des gesamten Gehirns berlicksichtigen und
die Auswirkungen der Datenverarbeitungsparameter auf die Ganzhirnmodelle untersuchen. In
Studie 1 wurden verschiedene Datenverarbeitungen verwendet, um das strukturelle Konnektom
zu berechnen, das die Ganzhirnmodelle beeinflussen kann. In der Folge flihrten beeinflussten
diese unterschiedlichen Ganzhirnmodelle die Simulationsergebnissen stark, und die Probanden
wurden auf der Grundlage empirischer und simulierter Daten geschichtet. In Studie 2 wurden
verschiedene Parzellierungsschemata des Gehirns fiir die Datenverarbeitung verwendet.
Empirische und simulierte Ergebnisse aus verschiedenen Parzellierungsschemata zeigten
interindividuelle Variabilitdt anhand von Datenvariablen. Vor diesem Hintergrund wurde in
Studie 3 eine variierende funktionelle Datenverarbeitung fir die dynamische Modellierung des
gesamten Gehirns verwendet. Die empirischen und simulierten Ergebnisse unter verschiedenen
Bedingungen wurden zur Klassifizierung von Parkinson-Patienten und gesunden Probanden
verwendet. Dabei wurde die Klassifizierungsleistung durch die Bedingungen der funktionellen
Datenverarbeitung beeinflusst. AulRerdem verbesserte die Ganzhirnmodellierung die Leistung,
wenn die empirischen Daten um die Simulationsergebnisse erganzt wurden. Aus diesen Studien
geht hervor, dass sich unterschiedliche Parameter der MRT-Datenverarbeitung nicht nur auf
die empirischen Daten auswirken, sondern auch zu unterschiedlichen Simulationsergebnissen

bei der dynamischen Modellierung des gesamten Gehirns fiihren.



Summary

Magnetic resonance imaging (MRI) in neuroscience is one of the most powerful non-invasive
methods to measure the human brain. Neuroimaging studies have been using MRI to extract
structural and functional properties from the brain. In computational neuroscience, whole-brain
modeling employs MRI data as a backbone and allows researchers to scrutinize simulated
whole-brain dynamics in silico by exploring free parameters of whole-brain models. However,
MRI data processing has no standardized method because of the lack of ground truth of the
human brain. Thus, using different softwares and data processing parameters can induce
inconsistent results and lead to different conclusions across studies. Besides, the impact of data
processing on whole-brain models has not been clearly understood. Therefore, | performed
three studies considering conditions of MRI data processing for whole-brain modeling and
investigated the impact of data processing parameters on whole-brain models. In study 1, varied
data processing was used to calculate the structural connectome, which can directly influence
whole-brain models. Subsequently, these different whole-brain models strongly influenced
simulated results and the subjects were stratified based on empirical and simulated data. In
study 2, different brain parcellation schemes were used for data processing. Empirical and
simulated results from different parcellation schemes showed inter-individual variability via
data variables. In these respects, in study 3, varied functional data processing was used for
whole-brain dynamical modeling. Afterwards, the empirical and simulated results with
different conditions were used for the classification of patients with Parkinson’s disease against
healthy subjects. The classification performance was affected by the functional data processing
conditions. Furthermore, whole-brain modeling improved the performance when the empirical
data are complemented by the simulation results. From these studies in the thesis, varying MRI
data processing parameters does not only impact empirical data but also leads to different

simulation results in whole-brain dynamical modeling and its application.
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List of abbreviations

BOLD

DWI

ECoG

EPI

FC

GoF

MRI

SC

Tlw

TVB

WBT

blood oxygenation-level dependent

diffusion-weighted image
electrocorticography
echo-planar image
functional connectivity
goodness-of-fit

magnetic resonance imaging
structural connectivity
T1-weighted image

The Virtual Brain

whole-brain tractography
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1 Introduction

Thousands of neuroimaging studies have been using magnetic resonance imaging (MRI) data
for the human brain research because it provides in vivo (within the living) large-scale (in
millimeters) structural and functional whole-brain information. MRI employs several protocols
to measure brains and obtains different attributes, such as T1-weighted image (T1w) for brain
anatomy (Destrieux et al., 2010; Fischl et al., 2002; Fischl et al., 2004), diffusion-weighted

image (DWI) for movement of water molecules in the brain (Mori and Zhang, 2006), and echo-

planar image (EPI) for blood oxygenation-level dependent (BOLD) signals (Ogawa et al., 1992;

Stehling et al., 1991). Structural MRI, such as T1w, scans static brains and can be used to

calculate areas or volumes of brain regions. Functional MRI records the changes of image
intensities in pixels (in 2 dimensions) or voxels (in 3 dimensions) across sequential measures
(through time) which represents brain dynamics, such as changes of brain activity that responses
to the circumstances and causes cognitive functions and behavior. Brain activity represents
responses of neurons in the brain. Changes of neural responses through time evoke variations
of oxygenation of hemoglobin in red blood cells and, subsequently, it results in fluctuations of
BOLD responses (Buxton et al., 2004; Logothetis et al., 2001). With these structural and

functional MRI data, researchers who are interested in the brain and related topics, such as
neuroscience, cognitive science, psychology, neurology, and psychiatry, have investigated the

human brain and delineated relationships with human behavior or clinical symptoms.

Most raw MRI data, firstly measured through an aperture (an MRI scanner), is not directly
applicable for further analysis but needs additional calculations to have a result that researchers
can use for their work, for example, diffusion tensor imaging for microstructural features of the
brain (Le Bihan et al., 2001), perfusion-weighted imaging for dynamics of cerebral blood flow
in stroke patients (Lee et al., 2020; Neumann-Haefelin et al., 1999; Schlaug et al., 1999),

functional MRI for task-driven activities of the brain (Knutson et al., 2000). Here, calculation

of MRI data for further analysis is termed “data processing” in this dissertation. In other words,
data processing utilizes MRI data for brain research or clinical application. Depending on
research questions, raw MRI data are processed by long-take data processing procedure consists
of serial calculations. A serial data processing is called “pipeline”, where the output of one data
processing is the input of the next one. A pipeline can have tens of data processing steps (Fig.
1), and these steps can be rearranged based on various purposes. However, we cannot
concatenate or switch data processing steps in any orders because pipelines should keep “data

fidelity”. Data fidelity is the proportion of information in processed data against the information
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Figure 1 Workflow of an MRI pipeline for whole-brain connectome. (1) Preprocessing of structural T1w and
DWI. (2) Calculation of whole-brain tractography using DWI. (3) Atlas labeling and transformation to DWI space.
(4) Reconstruction of structural connectome. (5) Preprocessing of functional EPI. Abbreviations: AC-PC =
anterior-posterior commissures; DWI = diffusion-weighted image; EPI = echo-planar image; T1w = T1-weighted
image.

of directly measured data, i.e., “ground truth”, see the reference for an example of data fidelity

in image processing (Gupta et al., 2021). For instance, if randomly generated noise is added to

MRI data, its data fidelity will drop after adding the noise. Although maintaining data fidelity
during MRI data processing is important for investigation, it has not been rigorously scrutinized
in neuroimaging studies because obtaining ground truth from in vivo human brains is difficult.
If the ground truth is available, MRI data processing or a pipeline can be validated based on
whether the data processing brings out the information from the raw data. In other words, the
validation is to evaluate data processing through agreement between directly measured data
(ground truth) and processed data as to whether the data processing is applicable for further
analysis (Fischl et al., 2002; Lee et al., 2020; Niedworok et al., 2016). With this respect, data

fidelity can be estimated via calculating similarity, such as Pearson correlation coefficient or
Dice coefficient, between ground truth and processed data. So, a validated data processing or
pipeline can be expected to process data in maintaining data fidelity. Consequently, researchers

can evidently interpret the results of brain MRI data processed by the validated pipeline or data
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processing. The issue of validation should be considered in popular MRI processing such as a

robust preprocessing pipeline for functional MRI (Esteban et al., 2019), voxel-based

morphometry (Ashburner and Friston, 2000), statistical parametric mapping (Penny et al.,

2011), human connectome (Sporns, 2011; Sporns et al., 2005), and whole-brain connectivity
networks (Park and Friston, 2013).

1.1 Difficulty in validation of MRI data processing

One of the main issues of brain MRI data processing is that it has not been standardized upon

a consensus among neuroimaging studies (Lindquist, 2020; Maier-Hein et al., 2017; Parkes et

al., 2018). The lack of consensus causes that MRI data processed by different pipelines from

separate studies can be different from each other (Botvinik-Nezer et al., 2020; Schilling et al.,

2021). Subsequently, the different results performed by different pipelines using the same MRI
data can impact data fidelity. To resolve this discrepancy, we can compare between ground
truth and processed data and choose one that shows the highest agreement among data

processing conditions (Maffei et al., 2022; Schilling et al., 2019). As mentioned, obtaining

ground truth in brain MRI studies is difficult, nevertheless a few neuroimaging studies designed
experiments to obtain ground truth for validation. Here are two validation examples of brain
MRI studies using ground truth: the association of evoked neural responses to BOLD responses

(neurovascular coupling) from in vivo animal studies (Bernal-Casas et al., 2017; Logothetis et

al., 2001) and comparing anatomical (axonal) connectivity in white matter from post-mortem

ex vivo brains with reconstructed streamlines connecting brain regions (Jones et al., 2021;
Maffei et al., 2022; Yendiki et al., 2022). Even though the validation using ground truth has

limitation in in vivo human brain, there are possible ways to obtain ground truth. For example,
there is a direct way to measure electrical neural responses in the human brain in vivo, but only

for severe clinical cases that need brain surgical operations such as electrocorticography (ECoG)

for patients with epilepsy (Kuruvilla and Flink, 2003). However, the validation approach using
ground truth in doing likewise is difficult to be generally applied to healthy participants or non-

clinical cases.
1.2 Unclear impact of data processing parameters

One aspect that should be considered is that processed data can differ when we use different
parameter values for data processing. Especially neuroimaging data processing, such as the
MRI data processing in Fig. 1, has many parameters besides some of them can be essential for

validation of the data processing. Because of a chain of data processing, small changes of some



of the parameters in the pipeline can also gradually impact the empirical data and its validation.
Moreover, the lack of standardized MRI data processing makes the impact of the parameters

complicated (Lindquist, 2020). For instance, measured (empirical) BOLD responses can differ

when the pipeline works with different parameters of data processing for functional MRI, such

as different temporal filters (Baria et al., 2011; Wee et al., 2012) and denoising methods (Parkes

et al., 2018). Even so, these studies addressed the impact of data processing conditions on

results what the researchers are interested in, but there are still unclear issues about
experimental conditions concerning the effect of different data processing parameter values on
conclusions of brain research. Many neuroimaging studies have been using likewise different
or non-standardized parameters for further analysis without considering the impact of data

processing parameters. For example, whole-brain tractography (WBT) for structural

connectome (Sporns et al., 2005) has used an arbitrary turning angle criterion for streamlines
(Soares et al., 2013) and different numbers of streamlines from 10 thousand to 10 million
(Bajada et al., 2019; Hagmann et al., 2008; Prasad et al., 2013; Proix et al., 2016). Furthermore,
there are several software tools to process DWI data (Soares et al., 2013) and tracking

algorithms to calculate streamlines (Yeh et al., 2021) although it is still under debate (Maffei et

al., 2022). Therefore, brain research using MRI data needs a systematic investigation of the

impact of parameters of MRI data processing.
1.3 Data-driven approach for generative models

The data-driven approach belongs to systematic ways to investigate the impact of data
processing parameters on empirical data via considering the parameters as variables, and
besides, we can formulate study designs with experimental parameter conditions, such as
control (fixed) and manipulated (varied) variables. In this way, we can probe results driven by
the parameter conditions and investigate the impact of the parameters on the processed data and
further analysis. If we use some parameter values from our experiences or the literature, we
cannot address how the data processing parameters impact the results. In the data-driven
approach, on the contrary, we vary the parameters on purpose as variables (free parameters)
covering applicable ranges and obtain the results corresponding to the varied parameters. For
example, when a pipeline processes data with several evenly distributed parameter values, the
processed data will be calculated separately for all tested parameter values. Subsequently, each
processed data can be tested step-by-step, i.e., each parameter value has a value of evaluation
for comparison between the processed and empirical data. Thus, we can illustrate the

trajectories of varied parameters versus tested results. With these evaluation values, the data-



driven approach searches for an optimal parameter value leading to the best evaluation (the
highest similarity), see the reference for an example of the data-driven approach via varying

parameter values (Lee et al., 2020).

In addition, the data-driven approach is applicable for hidden variables in a generative model
that mimics empirical data. In other words, when we use generative models in the data-driven
approach, it is easy to apply hidden variables which represent the neuroscientific or biological
circumstances to manipulating free parameters rather than experimental studies. For example,
the Balloon-Windkessel model (Buxton et al., 1998; Friston et al., 2003; Havlicek et al., 2015)
simulates BOLD signals using neural responses. This model contains neurovascular coupling

factors as the hidden variables, which are not directly measurable from in vivo human brain,
i.e., it is difficult to manipulate parameter values in experiments, such as cerebral blood flow,
cerebral blood volume and deoxyhemoglobin content. This model generates the neurovascular
coupling dynamics during the calculation of BOLD responses. When we apply the data-driven
approach for these neurovascular coupling factors, i.e., the hidden variables as free parameters,
the simulated BOLD responses can also be used to search for the optimal parameter values of
the model, leading to the simulated BOLD signals that show the highest similarity with the
empirical BOLD signals. For instance, dynamic causal modeling (Friston et al., 2003) simulates

task-related BOLD responses based on the task design during functional MRI acquisition and
varies the hidden variables of the Balloon-Windkessel model to estimate the optimal parameter
values to reach out the highest explained variance between simulated and empirical BOLD
signals (Friston et al., 2003; Stephan et al., 2007).

After the data-driven approach for the Balloon-Windkessel model, the optimal parameters of

the model can also be used for further analysis or data-driven approaches again. For instance,

Havlicek et al. (2015) found optimal parameter values of the neurovascular coupling using
dynamic causal modeling, and researchers who are interested in simulated BOLD signals can
apply the optimal parameter values as constant in their simulation and introduce free parameters

of other models for the data-driven approach (Havlicek and Uludag, 2020; Polimeni and Lewis,

2021). In doing likewise, Maffei et al. (2022) also reported that using an optimized pipeline for

DWI preprocessing as a standardized data processing minimizes discrepancies of tracking
results across different algorithms and improves performance in a challenge to reconstruct
axonal bundles in white matter. With predefined optimal parameters, therefore, we can
systematically extend simulation models and explore simulated results driven by free

parameters of additional data processing or computational models.



Searching for optimal parameter values of a given model is to fit the model to the optimal one
that simulates data showing the highest similarity with the empirical data, i.e., model fitting.
Owing to free parameters during the data-driven approach, model fitting can be systematically
probed via using methodologically unlimited parameter variations. Besides, other empirical
data can also be used for model fitting. For example, functional connectivity (FC), which is
calculated by Pearson correlation coefficient of BOLD signals between two brain regions, can
be used for model fitting (Deco et al., 2015; Honey et al., 2009; Naskar et al., 2021). To this

end, we obtain empirical FC using empirical BOLD signals between brain regions in resting-
state (task-free) functional MRI and calculate simulated FC using simulated BOLD signals with
the same brain regions as for the empirical FC. Afterwards, we compare simulated FC with
empirical FC in separate results by using varied parameter values of models that we are
interested in. Consequently, we search for the optimal parameters of the models that result in

the highest similarity between simulated FC and empirical FC.
1.4 Whole-brain dynamical modeling

In the data-driven approach, whole-brain in vivo neuroimaging research including human
subjects is limited because it is not feasible to perform many conditions corresponding to the
number of varied parameter conditions in experimental study. On the contrary, whole-brain in
silico modeling (performing on computer or computer simulation that simulates brain activity
based on the entire brain connectivity) is suitable for applying parameter variation for the data-

driven approach (Popovych et al., 2019). Thus, whole-brain dynamical modeling based on

model fitting using free parameters allows us to apply the systematic investigation for
understanding the brain as a whole system. By doing so, we can scrutinize simulated results in

various perspectives based on free parameters and different objectives for model fitting.

The advantage of building whole-brain in silico models is that it allows us to investigate the
human brain as synthetic entities in experimental virtual intervention for clinical conditions that

researchers are eager to see (An et al., 2022; Bansal et al., 2018; Owen et al., 2013). For instance,

Owen et al. (2013) performed virtual corpus callosotomy on empirical structural networks of

healthy subjects, i.e., cutting (turning non-zero values into zeros) the corpus callosum to split
connections between hemispheres in the structural networks in silico. Afterwards, they
compared the simulated structural networks of the virtual corpus callosotomy with empirical
structural networks of patients with agenesis of the corpus callosum. As a result, it showed that
graph-theoretical network properties of the simulated structural networks of the healthy subjects

shift toward the empirical structural networks of the patients.
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In addition, we can also introduce whole-brain computational models that simulate activity of
the entire brain and explore simulated data in various conditions. To this end, studies in
computational neuroscience have used the empirical large-scale whole-brain structural
connectome (axonal connections and path lengths in the white matter) that provides the brain
architecture as a backbone of whole-brain computational models, and whole-brain
computational models have been developed for simulation of the brain dynamics based on the
broad spectrum of updating neural activity (Cabral et al., 2012; Honey et al., 2009; Jirsa et al.,
2017; Moran et al., 2013; Roberts et al., 2019; Sanz-Leon et al., 2015; Zimmermann et al.,

2018). Besides Buzsaki (2006) considered the brain activities of each region as harmonized

signals. Similarly, we can apply mathematical models about coupled oscillators for whole-brain
models (Breakspear et al., 2010; Kuramoto, 1984; Rodrigues et al., 2016). With various

computational or mathematical models, we can investigate simulated brain dynamics in
different perspectives. Furthermore, we can easily manipulate parameter values of the whole-
brain models and find which parameters are important for a better understanding of the brain

dynamics.

As an example, The Virtual Brain (TVB) for large-scale whole-brain dynamics (Sanz-Leon et

al., 2015) is applicable to whole-brain computational modeling in the data-driven approach.

TVB provides various models of coupled oscillators such as Kuramoto (Kuramoto, 1984), Hopf

bifurcation (Kuznetsov et al., 1998), and Fitzhugh-Nagumo type (Fitzhugh, 1961; Nagumo et

al., 1962) and neural activities such as Jansen-Rit (Jansen and Rit, 1995), Wilson-Cowan
(Wilson and Cowan, 1972), Wong-Wang (Deco et al., 2013; Wong and Wang, 2006), and
Larter-Breakspear (Breakspear et al., 2003). These computational or mathematical models in

TVB can be built based on whole-brain architecture derived from the structural connectome,
and whole-brain computational models can also be utilized for investigating the impact of
different modeling approaches on simulated results. However, TVB reconstruction pipeline for

MRI data has only a few options for data processing parameters. For instance, it provides three

parcellation atlases, i.e., Desikan-Killiany (Desikan et al., 2006), Destrieux (Destrieux et al.,

2010), and parcellation for virtual epileptic patients (Jirsa et al., 2017), cf. recent studies of brain

connectivity used around 20 parcellations (Domhof et al., 2021; Messe, 2020).

Regarding the impact of data processing parameters on whole-brain dynamical models, i.e., the
main question of this dissertation, study designs here should be formulated by systematic
approaches for manipulating data processing parameters. As a consequence, | develop an MRI

pipeline that has manipulable parameters (free parameters), which is available for the data-



driven approach. With this, | can vary data processing parameters of the pipeline. After that, I
search for optimal parameters of the whole-brain computational models via model fitting and
obtain simulated brain responses helping me to answer research questions. By doing this, |
establish a systematic whole-brain dynamical modeling against empirical data, and the
simulation results will provide a way of delineating the impact of data processing parameters
on whole-brain modeling. From a futuristic perspective in computational neuroscience, the
cumulation through iterations of the whole-brain dynamical modeling via the data-driven
approach will allow us to contemplate a whole-brain system across scales in brain cartography

(Frackowiak and Markram, 2015) from microscale (individual neurons or neuronal populations)

to macroscale (brain parcels) that can compute behavioral or cognitive processes like the human

brains (Kriegeskorte and Douglas, 2018).

1.5 Whole-brain simulation in computational neuroscience

Hodgkin and Huxley (1952) proposed simulation of membrane potentials in individual neurons.

Since this, researchers in computational neuroscience have developed many simulation models
to mimic empirical neural responses in the brain. However, the main impediment to building

models is the enormous number of neurons and thousands of synaptic connections of each

neuron. The human brain contains around 86 billion neurons on average (Herculano-Houzel,
2012). Accordingly, reconstruction of neuronal circuits using the entire neurons for such a
whole-brain neuronal system is immense and complex processing. For instance, neocortical
neuronal microcircuits of 31 thousand neurons (only 0.036 % of the entire human brain)

required enormous resources (Markram et al., 2015). Despite the current technological advance,

it is still impossible to reconstruct whole-brain system using the entire neurons in the human

brain.
1.5.1 Scale reduction of whole-brain simulation to macroscale

In spite of the difficulty, an alternative way to straighten it out is to reduce the scale from

microscale to mesoscale or even further to macroscale (Sporns et al., 2005). This approach

requires the entire central nervous system in multi-scale and multi-level entities across spatial

scales while spanning life called human cerebral cartography (Frackowiak and Markram, 2015).

To scale the micro-level down to the meso-level, we need to show that a reduced model
represents the functional properties of a group of neurons. For instance, electrophysiological
research of the sensory cortex in animal studies confirmed the column-columnar organization

representing a receptive field, such as the orientation selectivity to visual stimuli via interacting



among tens of neurons (Hubel and Wiesel, 1962) as a group of neurons in a columnar formation

(Mountcastle, 1997). In other words, the column-columnar organization model allows us to

reduce nearly 100 neurons into a single minicolumn for each receptive field (see Minicolumn

in Mesoscale in Fig. 2). The scale reduction regarding minicolumns was already mentioned

more than 15 years ago (Sporns et al., 2005). However, the human brain still has sub-billion
minicolumns, and the current technology has not reached that computational power. Therefore,
by integrating the functional representations of minicolumns, we can further reduce them into
a group of minicolumns, called neural groups or populations in the cortex (see Neural
population in Mesoscale in Fig. 2), that also represent a collection of receptive fields such as a

pinwheel structure of visual orientations in striate cortex of cat (Maldonado et al., 1997) and a

center-surround modulation for facilitation and suppression via interacting among cortical

columns in primary visual cortex of cat and monkey (Series et al., 2003). Following this scale

reduction (Fig. 2), we can further scale them down to the level of computationally or technically

manageable scales in animal studies, for instance, whole-brain neural activity in a single-cell

level measured by the light-sheet microscopy (Keller and Ahrens, 2015), a reduced model for

a barrel cortical column of mice (Jung et al., 2019), and a brain-wide modeling using calcium

imaging (Rosch et al., 2018).

For the in vivo human brain, it needs further scaling down to the MRI spatial resolution on a
millimeter-scale, i.e., the macroscale (or large-scale). In the literature, it is stated that slightly
less than 150 thousand neurons in a cortical column distribute beneath one squared millimeter

cortical surface area (Herculano-Houzel, 2012), see also Neocortex in Mesoscale (Fig. 2). When

we assume that the hundreds of thousand neurons play a role as a functional unit in a columnar
formation (a form of neural columns) in the cerebral cortex, we can reconstruct the cortical

surface with these cortical functional units. For instance, Spiegler et al. (2016) rendered the

cortical surface of each hemisphere from T1w data and created 8,192 vertices on a mesh of
cortical surface in each hemisphere. They also included 116 nodes for subcortical areas.
Subsequently, they reconstructed a surface-based whole-brain model, following that each

vertex plays as a neural mass model connected with other vertices (Spiegler and Jirsa, 2013).

Thus, the total number of simulation nodes in the surface-based whole-brain model was 16,500.
However, they executed the whole-brain model for only one second with 40 microseconds for
time integration because the model had many simulation nodes. Although this approach scales
down around 52 million times to the macroscale and assumes drastic scale reduction regarding
cortical columns as functional units, it still needs more computational power. To obtain

simulated whole-brain dynamics in appropriate time lengths, therefore, it is inevitable to build
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Figure 2 Schematic illustration of scale reduction for simulation models in computational neuroscience from the
microscale to the macroscale. The numbers of nodes in the middle indicate the number of simulation units that
shows how it strongly reduces from the entire neurons in the human brain.

a large-scale (macroscale with sub-thousand nodes) whole-brain model representing the human

brain.
1.5.2 Large-scale human connectome for whole-brain modeling

Almost two decades ago, Sporns et al. (2005) introduced the human ‘“connectome” to

understand brains as a large-scale network consisting of interconnected brain regions that cover
the entire human brain (see Macroscale in Fig. 2). To reconstruct the human connectome, we
define brain regions with a certain criterion. For instance, brain parcellation schemes or brain
atlases provide a way to split neocortical surfaces into tens or hundreds of parcels (Eickhoff et

al., 2018). Various parcellation schemes have been developed for brain research based on

functional properties (Schaefer et al., 2018; Shen et al., 2013), structural shapes (Desikan et al.

2006; Destrieux et al., 2010), and cytoarchitectonic variations (Amunts et al., 2020; Brodmann,

1909; von Economo and Koskinas, 1925). With this, we can split the brain into separate regions
as network nodes and estimate connectivity or coupling strength between the brain regions as
network edges. There are several ways to calculate whole-brain connectivity with different
points of view (Park and Friston, 2013), i.e., structural and functional connections. For the

structural connectome, the pipeline in Fig. 1 processes T1w and DWI data in modules 1 to 4
and calculates WBT containing streamlines that delineate anatomical connections through
white matter of the brain, i.e., axonal bundles. Subsequently, streamlines connecting brain
regions were extracted by using a given parcellation scheme, and we obtain the number of
streamlines for all pairs of brain regions from the entire brain and averaged path lengths of them,

i.e., structural connectivity (SC). For the functional connectome, the pipeline in Fig. 1 processes
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T1w and EPI data in modules 1, 3, and 5. After that, we can extract BOLD signals from the
processed EPI data using the given parcellation scheme, which is the same as in the processing
of SC. Then, we can calculate FC using the BOLD signals. More precisely, we apply the
Pearson correlation coefficient to cross-correlate the given BOLD signals. Now the human
connectome, i.e., the whole-brain SC and FC, covers a computationally applicable scale (a
large-scale) for dynamical modeling with hundreds of nodes. Thus, many simulation studies of
the human brain have used the large-scale (or macroscale) whole-brain connectome for model
validation such as the comparison between empirical FC and simulated FC (Deco et al., 2015;
Honey et al., 2009; Naskar et al., 2021).

1.5.3 Data processing influences the human connectome

As aforementioned, in the whole-brain simulation, SC (streamline counts and averaged path
lengths) provides a backbone of the whole-brain model that describes how strongly brain
regions are coupled (interacting) with delays via streamline counts (coupling strengths) and
averaged path lengths (delays). Although the estimated streamlines have around 30% of the

false positive and false negative connections in the monkey brain (Girard et al., 2020), this is

the method by which we can extract the large-scale structural connectome from the human brain.
Recently, MRI processing pipelines and tracking algorithms have been systematically tested
across around ten research teams, and the best performance showed 80% of true positive rate

with only 5% false positive rate (Maffei et al., 2022). In addition, the averaged path lengths

between brain regions allow us to apply delayed coupling (or neural signal propagation speed)
to the whole-brain model based on the results of neurophysiological measures in the literature

(Caminiti et al., 2013). Hence, varying data processing parameters in the SC pipeline (module

1to 4 in Fig. 1) results in different SC and subsequently changes the backbone of the whole-
brain model. Consequently, simulated whole-brain dynamics will be affected. From the
perspective of the data-driven approach, varying data processing parameters in the SC pipeline
impacts the simulated results and also allows us to investigate the impact of data processing

parameters on whole-brain dynamical modeling.

The FC pipeline can also be tested via doing likewise. Sporns (2011) pointed that FC can also

be critically affected by the choice of data or signal processing (Baria et al., 2011; Parkes et al.,

2018; Wee et al., 2012). Thus, empirical FC and simulated FC represent dynamics of brain

activity differently when we use different statistical or data processing methods for BOLD and
FC calculation. Accordingly, we can also vary data processing parameters in the FC pipeline

(modules 1, 3, and 5 in Fig. 1) for the data-driven approach. Therefore, by manipulating data
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processing parameters in the SC and FC pipelines, we can explore whole-brain dynamical
models and also search for the optimal conditions and parameter values corresponding to the

highest agreement between empirical data and simulated results for model fitting.

In addition to the data processing parameters in the SC and FC pipelines, a brain parcellation
scheme can also impact the results of both pipelines because SC and FC are calculated by using
a region-based analysis. In other words, the large-scale whole-brain connectome of the human

brain can show different results when we use different parcellation schemes (Domhof et al.,

2021; Messe, 2020). Besides, as the aforementioned analysis for the human connectome, there

are various parcellation schemes (functional, structural, and cytoarchitectural) to split cortical
surfaces of the human brain into various levels of granularity, i.e., how small brain regions are

(Eickhoff et al., 2018). Parcellation schemes as different scale-reduction perspectives for large-

scale whole-brain connectome can also be study- or data-dependent approaches that reflect a
given condition of study design or data modality. Therefore, one of the challenges in human
connectome research is also to select an appropriate parcellation scheme for whole-brain

dynamical modeling.
1.6 Ethics protocols

The ethics protocols were approved by the Ethics Committee of Heinrich Heine University
Dusseldorf (Study number: 4039 and 2018-317_1-RetroDEUA).

1.7 Aims of thesis

Currently, the lack of a consensus or standardized MRI processing and the unknown impacts
of data processing parameters on the empirical whole-brain connectome are limiting factors in
neuroimaging study. Due to this, the impact of MRI data processing parameters on whole-brain
dynamical modeling should be tested by systematic approaches. The current thesis, therefore,
hypothesizes that varying MRI data processing parameter values impacts whole-brain
dynamical modeling. To this end, | formulate three research questions for the thesis focusing
on the consequences of data processing parameters on empirical data and simulated results for
whole-brain dynamical modeling. First, how does structural MRI data processing impact
empirical structural architecture and whole-brain dynamical modeling? With this question, I
investigate the impact of structural data processing parameters on whole-brain dynamical
modeling and establish a structural pipeline for SC as a backbone of whole-brain models.

Second, how do parcellation schemes influence empirical and simulated data variables? This
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Figure 3 Illustration of workflow in the current project. The shaded workflows indicate the data processing for
each study. Data processing parameters are varied in the green boxes. The red boxes are about whole-brain models
for simulation. The orange boxes are about model validation. Afterwards, statistical analyses (blue boxes) are
performed for hypothesis testing of each study.

question is to scrutinize the impact of parcellation schemes with varied granularity on simulated
results focusing on personalized whole-brain models. Third, which functional data processing
is optimal for clinical application based on whole-brain model fitting? For the third question,
finally, I apply the developed MRI pipeline (Fig. 1) and whole-brain dynamical modeling to
clinical data and investigate clinical applications based on whole-brain model fitting with

different functional data processing conditions.

The workflow in Fig. 3 illustrates experimental designs of how data processing steps proceed
with the considered research questions regarding variations of data processing parameters. The
green boxes indicate data processing steps of experimental conditions for the empirical whole-
brain connectome. The red boxes are about whole-brain models for simulated whole-brain
dynamics. Afterwards, the model validation (orange box) compares simulated FC with
empirical data and searches for the optimal model parameter corresponding to the maximal
correspondence between simulated and empirical data. In the end of the hypothesis testing (blue
box), | perform statistical analyses of results and address the impacts of data processing

parameters on whole-brain dynamical modeling and their clinical applications.

1.7.1 Study 1: Impact of structural data processing on modeling
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The first study is to investigate the impact of structural data processing parameters on SC and
simulated results (see Study 1 in Fig. 3). As aforementioned, the reconstruction of WBT does
not have optimal parameters in tracking algorithms, for instance, turning angles for streamline
tracking or the number of streamlines of WBT. Furthermore, different numbers of streamlines
have been used for WBT from 10 thousand to 10 million (Bajada et al., 2019; Hagmann et al.,
2008; Prasad et al., 2013; Proix et al., 2016). Thus, | consider different WBT density conditions
with two parcellation schemes, i.e., functional and structural parcellation atlases. By doing so,

the first study shows the impact of WBT densities on empirical structural architecture and

corresponding whole-brain dynamical modeling for young and healthy participants.
1.7.2 Study 2: Impact of data processing of parcellation on modeling

The second study inquires how the parcellation schemes influence empirical and simulated data
variables (see Study 2 in Fig. 3). The considered experimental conditions are about different
granularities of brain parcellation and varied tissue thresholding criteria. To this end, the study
contains two functional atlases with varied granularities (different numbers of parcels) and one
structural atlas with varied tissue thresholding criteria (different sizes of the same parcel). In
addition, two whole-brain models for all considered conditions are used for whole-brain
dynamical modeling. In consequence, the second study shows that the parcellation schemes

influence empirical and simulated results with inter-subject and inter-parcellation variability.
1.7.3 Study 3: Impact of functional data processing on modeling in clinical data

In the third study, | apply a convolution-based two-population model to generate electrical

signals for local brain dynamics (Jansen and Rit, 1995; Lopes da Silva et al., 1974) and employ

different temporal filtering conditions for empirical and simulated BOLD signals with two brain
parcellation schemes, i.e., structural and functional ones (see Study 3 in Fig. 3). In addition to
the functional data processing conditions with the two parcellation schemes, I introduce a new
model-fitting approach to detect group differences between healthy subjects and patients with
Parkinson’s disease. This approach can also provide a way of training machines to classify
subjects into healthy control or the disease. To this end, | apply a machine learning method to
train a classifier using empirical and simulated data for the patient classification. With the
classification performance, | discuss the impact of signal processing (functional data processing)

of BOLD signals on whole-brain dynamical modeling and corresponding classification results.
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Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data uti-
lized for the model derivation and validation. There is however still no standardized data processing for magnetic
resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study,
we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can
influence the validation results of the whole-brain mathematical models informed by SC. For this, we introduce
a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography
(WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and
distinct model fitting modalities. The main objective of this study is to explore how the quality of the model
validation can vary across the considered simulation conditions. We observed that the graph-theoretical network
properties of structural connectome can be affected by varying tractography density and strongly relate to the
model performance. We also found that the optimal number of the total streamlines of WBT can vary for differ-
ent brain atlases. Consequently, we suggest a way how to improve the model performance based on the network
properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population
of subjects can be stratified into subgroups with divergent behaviors induced by the varying WBT density such
that different recommendations can be made with respect to the data processing for individual subjects and brain

parcellations.

1. Introduction

Some 15 years ago, the human brain connectome was introduced to
understand functional brain states which are emerged by structural ar-
chitecture (Sporns et al., 2005). Over more than a decade, researchers
have been investigating the human connectome to elucidate the rela-
tionship between structure and function (Goni et al., 2014; van den
Heuvel and Sporns, 2011; Sporns, 2011; Suérez et al., 2020). Recently,
network neuroscience provides integrative perspectives to validate bio-
physically realistic models via structural connectome (Bassett et al.,
2018). However, the lack of ground truth and golden standards for the
calculation of the human connectome caused a central body of ongo-
ing debates in the literature to validate the macroscopic structural and
functional connectivity from neuroimaging data of the human brain
(Lindquist, 2020; Maier-Hein et al., 2017; Parkes et al., 2018). In ad-
dition, no consensus method has been accepted so far as a standardized
approach for calculating the whole-brain connectome (Schilling et al.,
2019; Sotiropoulos and Zalesky, 2019). Many studies have investigated
the effects of the data processing on the obtained results with respect

* Corresponding author.

to reproducibility with different methodologies for structural architec-
ture (Bassett et al., 2011; Buchanan et al., 2014; Cammoun et al., 2012;
Dennis et al., 2012; Messaritaki et al., 2019; Owen et al., 2013; Roine
et al., 2019), functional homogeneity (Bellec et al., 2015; Thirion et al.,
2014), and cortical resolutions for brain modeling (Proix et al., 2016).
These studies reported good-to-excellent reliability or stable outcome
(Dennis et al., 2012; Owen et al., 2013), recommendation (Messaritaki
et al., 2019; Roine et al., 2019), and limitations (Buchanan et al., 2014).
At this stage, researchers summarized the influence of data processing
for structural brain network measures (Qi et al., 2015). Nevertheless,
most of the used techniques, algorithms and parameters for processing
the neuroimaging data remain at the level of the best practice lacking a
solid theoretical foundation.

Without the ground truth, a model-based approach can be a pos-
sible way to investigate the impact of the data processing on the
observed brain dynamics and reveal the corresponding mechanisms
(Popovych et al., 2019). At this, it is assumed that the considered mathe-
matical models derived from the interactions between brain regions can
closely simulate the dynamics of the brain responses. By comparing the
simulated and empirical data, we can address the model performance
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as given by the results of the model fitting and thoroughly explore the
model parameters and dynamics. Consequently, we can apply the model
validation to evaluate the data processing by searching for the optimal
model parameters that provide the best fitting of the model against the
empirical data (Cabral et al., 2011; Endo et al., 2020; Zimmermann
et al., 2018). Such an evaluation procedure can be repeated for sev-
eral modeling conditions, where the parameters of the data processing
are varied. In this manner, we can systematically approach the optimal
modeling condition and data parameters used for the data processing,
which enhances the agreement between the simulated and empirical
data.

Previous studies have used different whole-brain tractography
(WBT) densities ranging from 5K to 100M tracked streamlines for the
human connectome (Bajada et al., 2019; Hagmann et al., 2008; Honey
et al., 2009; Prasad et al., 2013; Proix et al., 2016; Roine et al., 2019).
In particular, Roine et al. (2019) tested the reproducibility of graph-
theoretical measures across varied streamline densities from 10K to
100M and concluded that tractography density should be sufficiently
high for excellent reproducibility. High tractography density is also ben-
eficial for highlighting subtle clinical differences, and already 15K-20K
streamlines may be sufficient to differentiate between patients with
Alzheimer’s disease or mild cognitive impairment from healthy con-
trols (Prasad et al., 2013). However, the impact of the WBT density
on the human connectome is still unclear. Besides, the derivation of the
whole-brain models essentially relies on the underlying network calcu-
lated from the whole-brain empirical structural connectivity (SC). The
latter provides the brain architecture serving as a backbone for the mod-
eling of brain dynamics (Cabral et al., 2011; Endo et al., 2020; Honey
et al., 2009; Zimmermann et al., 2018). It is however difficult to eval-
uate whether the selected parameters of the data processing for WBT
density (e.g., the number of WBT streamlines) are reliably reflecting the
brain architecture, and what are the optimal values for modeling, e.g.,
for maximal similarity between simulated and empirical data. In this
study, we address the latter problem and search for the optimal config-
urations which could lead to the optimal SC extraction resulting in the
best fit between the simulated and empirical data.

The broad spectrum of the computational models used for simula-
tion of the brain dynamics ranges from the micro- to the macro-scale
(Deco et al., 2008; Endo et al., 2020; Freeman, 1987; Hodgkin and Hux-
ley, 1952; Jansen and Rit, 1995; Wilson and Cowan, 1973). Besides
the sophisticated computational modeling concepts, the responses of
brain regions can be considered as a harmonized signal (Buzsaki, 2011).
Thus, we can also use simple mathematical models of coupled oscilla-
tors to generate oscillating brain activity (Breakspear et al., 2010; Ku-
ramoto, 1984; Rodrigues et al., 2016). In particular, systems of coupled
phase and generic limit-cycle oscillators were suggested by previous
studies for modeling cortical oscillations of the resting-state blood oxy-
gen level-dependent (BOLD) dynamics (Breakspear et al., 2010; Cabral
et al., 2011; Deco and Kringelbach, 2016; Deco et al., 2017; Fukushima
and Sporns, 2018; Ponce-Alvarez et al., 2015). These studies reported
the maximal agreement between simulated and empirical data as given
by the Pearson correlation between simulated and empirical functional
connectivity (FC) in the range between 0.3 and 0.7. In this study, we
consider such a system of coupled phase oscillators to model the slow
oscillations of the resting-state BOLD dynamics.

The main topic of the current study is to investigate the impact of
the WBT streamline number used for calculation of SC and the average
streamline path-length (PL) between brain regions on the simulation re-
sults. We considered a system of coupled phase oscillators with delayed
coupling (Yeung and Strogatz, 1999), where the anatomical information
about brain structural architecture (SC and PL) from diffusion-weighted
MRI (dwMRI) was used for its derivation, i.e., to build the model net-
work and approximate the coupling weights and time delay between the
network nodes. The latter are the brain regions parceled according to a
given brain atlas/brain parcellation. We considered two distinct brain
parcellations based on anatomical and functional brain properties. We
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systematically explored the model parameter space of two free param-
eters of global coupling and global delay in order to fit the model to
empirical data. We also used two model fitting modalities as given by
1) similarity (Pearson correlation) between simulated and empirical FC
as a goodness-of-fit of the model and 2) similarity between simulated
FC and empirical SC to probe the dynamics of the model as related to its
structural network. The obtained simulation results were compared with
each other across subjects and simulation conditions, which allowed us
to scrutinize the effects of structural architecture modulated by varying
WBT density and brain parcellations on the model validation against
empirical data. The used approach can also lead to a better understand-
ing of the properties of the obtained data influenced by selected data
processing, which can play a key role for the brain modeling as well as
data analytics.

2. Materials and methods

The current study considered 351 wunrelated subjects (172
males, age 28.5 + 3.5 years) from the Human Connectome
Project (HCP) S1200 dataset (Van Essen et al., 2013). HCP data
(https://www.humanconnectome.org) were acquired using protocols
approved by the Washington University institutional review board
(Mapping the Human Connectome: Structure, Function, and Heri-
tability; IRB #201204036). Informed consent was obtained from sub-
jects. Anonymized data are publicly available from ConnectomeDB
(https://db.humanconnectome.org). In the current study, resting-state
functional MRI (fMRI), T1-weighted image (T1) and diffusion-weighted
images (DWI) from 3T connectome scanners (modified Siemens PRISMA
with higher gradient strength) were used for investigation. Resting-state
fMRI was acquired with 2 mm isotropic voxels, T1 was in 0.7 mm
isotropic voxels, and DWI consisted of 90 directions for 1000, 2000 and
3000 s/mm? b-values in total 270 weighted directions with 1.25 mm
isotropic voxels.

We reconstructed SC and PL by using six WBT densities and two at-
lases for individual subjects, then calculated simulated FC from BOLD
signals generated by the computational model composed of coupled
phase oscillators with delayed coupling. We explored two free param-
eters of the model for each subject and condition and validated the
model through the two model fitting modalities. We also calculated
graph-theoretical network properties of SC and PL over considered con-
ditions and compared the network properties with the goodness-of-fit of
the model. The individual subjects were stratified into groups based on
three criteria derived by the network properties and modeling results.
The workflow of the current study is illustrated in Fig. 1.

2.1. Preprocessing of MRI data and connectivity extraction

The current study used an in-house pipeline for the extraction of SC
and PL matrices from the DWIs. The pipeline consists of four modules:
preprocessing of MRI and DWI data, WBT calculation, atlas transfor-
mation and connectivity reconstruction. The pipeline is publicly avail-
able (https://github.com/inm?7/vbc_dwmri). It was optimized for paral-
lel processing on high-performance computational clusters (Jiilich Su-
percomputing Centre, 2018).

The pipeline was created with functions of Freesurfer (Dale et al.,
1999), FSL (Smith et al., 2004), ANTs (Tustison et al., 2010), and
MRtrix3 (Tournier et al., 2019). Freesurfer was used for processing the
T1 including bias-field correction, tissue segmentation, cortical (sur-
face) reconstruction, volume-surface converting, and surface deforma-
tion for parcellation as well as for the correction of the eddy-current
distortions and head-motion in DWIs using the corresponding b-vectors
and b-values. MRtrix3 performed de-noising and bias-field correction
on the DWIs. The pre-processed images were used for co-registration
between the T1 and the DWIs and linear and non-linear transformation
by functions of FSL. Linear and non-linear transformation matrices and
images for registration from the standard MNI space to the native space
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Fig. 1. Workflow of the current study. (a) The whole-brain tractography (WBT) was generated by an in-house pipeline. Structural connectivity (SC) and average
path-length (PL) between brain regions were reconstructed based on a given brain parcellation/brain atlas (6 WBTs and 2 atlases). (b) The empirical BOLD signals
were extracted for each brain region from the ICA-FIX preprocessed HCP data, and the empirical functional connectivity (FC) was calculated between BOLD signals
by Pearson correlation coefficient. (¢) By using the empirical SC and PL matrices, the whole-brain network was reconstructed. The network nodes representing the
brain regions were equipped with the phase oscillators (Eq 1) coupled with the coupling weights (Eq 2) and time delays (Eq 3) extracted from the empirical SC and
PL matrices, respectively. The natural frequencies of the oscillators were extracted from empirical BOLD signals. The model generated simulated BOLD signals used
for the calculation of the simulated FC. (d) The simulated FC was compared with empirical FC and SC, and the model was validated by optimizing its parameters
for the best correspondence/fitting between the simulated and empirical data. At this, the impact of the data processing on the model validation was evaluated and

described.

and vice versa were estimated. Through the image registration, gray
matter, white matter, cortical/subcortical, cerebellar and cerebrospinal
fluid masks were generated in the native DWI space.

The WBT calculation module included only MRtrix3 functions,
where the response functions for spherical deconvolution were esti-
mated using multi-shell-multi-tissue constrained deconvolution algo-
rithm (Jeurissen et al., 2014). Fiber oriented distributions (FOD) were
estimated from the DWIs using spherical deconvolution, and the WBT
was created through the fiber tracking by the second-order integration
over the FOD by a probabilistic algorithm (Tournier et al., 2010). In the
latter step, we used six different numbers of total streamlines for varying
WBT density: 10K, 50K, 100K, 500K, 2M, and 10M, where the “K” and
“M” letters stand for thousand (Kilo-) and million (Mega-), respectively.
The tracking parameters were set as default values of tckgen function
from MRtrix documentation (https://mrtrix.readthedocs.io), where the
following values were used: step size = 0.625 mm, angle = 45 degrees,
minimal length = 2.5 mm, maximal length = 250 mm, FOD amplitude
for terminating tract = 0.06, maximum attempts per seed = 50, maxi-
mum number of sampling trials = 1000, and down sampling = 3.

The atlas transformation module applied the linear and non-linear
transformation matrix and images to atlases that were sampled in the
standard MNI space. We used the Schaefer atlas with 100-area parcella-
tion (Schaefer et al., 2018) and the Harvard-Oxford atlas with 96 cortical
regions (Desikan et al., 2006). After the transformation, the labeled vox-
els in the gray matter mask were selected for a seed and a target region.

Consequently, the tck2connectome function of MRtrix3 reconstructed SC
and PL (count and path-length matrices in Fig 1a).

For the empirical FC, the BOLD signals were extracted from the
resting-state fMRI data processed by ICA-FIX as provided by HCP repos-
itory (Griffanti et al., 2014). During the ICA-FIX, a weak high-pass
filtering (2000 s high-pass filter) was applied for detrending-like ef-
fect (Smith et al., 2013). The Schaefer atlas and the Harvard-Oxford
atlas were applied for the parcellation of the processed fMRI into
brain regions within the standard MNI 2 mm space (6th-generation in
FSL). Empirical FC was calculated using Pearson correlation coefficient
across BOLD signals extracted as mean signals of the parceled brain re-
gions. There were four resting-state fMRI sessions (1200 volumes, TR =
720 ms) which consist of two different phase-encoding directions (left
and right) scanned in different days. In addition, a concatenated BOLD
signal was generated by using all four z-scored BOLD signals from the
above four fMRI sessions, which resulted in five empirical FCs calcu-
lated for BOLD signals from the four fMRI sessions and the concatenated
BOLD signals for each subject. Finally, 12 simulation conditions (6 WBTs
X 2 atlases) were tested by simulation of the mathematical whole-brain
model, where the model parameters were optimized for the best fit be-
tween simulated and empirical data.

2.2. Mathematical whole-brain model

We simulated a whole-brain dynamical model of N coupled phase
oscillators (Cabral et al., 2011; Kuramoto, 1984; Yeung and Strogatz,
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N
. c )
Gi() =2mf;+ ; ki sin (@ (1 = 7)) = 9,(0) + .
i=1,2,...,N. (1)

The number of oscillators N corresponds to the number of brain regions
parceled as defined by a given brain atlas, where ¢;(f) models the phase
of the mean BOLD signal of the corresponding region, and the simulated
BOLD was calculated as sin(g;(1)). C is a global coupling which scales
the level of couplings of the whole-brain network. #; is an independent
noise perturbing oscillator i, which is sampled from a random uniform
distribution from the interval [-0.3,0.3]. The natural frequencies f; were
estimated from the empirical data as frequencies of the maximal spectral
peaks (restricted to the frequency range from 0.01 Hz to 0.1 Hz) of the
empirical BOLD signals of the corresponding brain regions. k;; stands for
the coupling strength between oscillators i and j, and 7;; approximates
the time delay of the signal propagation between oscillators i and ;.
They were calculated from the empirical SC and PL and determined by
the following equations:

w,

ij

kij = ) 2)
Yo w >

where w;; is the number of streamlines between i"* and j** parceled

regions and < W > is an averaged number of streamlines over all con-

nections except self-connections, and

Ly
7 = V> :TL,-I-, 3)

where 7 is a global delay (unit: s/m) which is a reciprocal of an average
speed of signal propagation < V > through the whole-brain network.
The time step of the numerical integration of Eq 1 by the stochastic Heun
method was fixed to 0.04 s, and the simulated signals were generated for
3500 seconds after skipping 500 seconds of the transient. The simulated
BOLD signals and the corresponding simulated FCs were calculated from
the phases downsampled to TR = 0.72 s, which is the repetition time of
HCP fMRI.

The considered mathematical model (Eq 1) has two main free pa-
rameters: the global coupling C and the global time delay z. The global
coupling ranged from O to 0.504 in evenly discretely distributed 64 val-
ues, and the global delay was from 0 to 423 s/m in evenly discretely
distributed 48 values. Therefore, 3072 (64 x 48) simulations were per-
formed for each subject to calculate the simulated FCs that were com-
pared with empirical functional and structural data for each simulation
condition. A total of 12,939,264 (64 x 48 x 12 x 351) simulations of
model (Eq 1) were performed in this study for 351 subjects with 12
conditions (6 WBTs x 2 atlases).

We explored the 2-dimensional model parameter space as men-
tioned above and found the optimal parameter values for the best corre-
spondence between simulated and empirical data. The correspondence
was calculated by Pearson correlation coefficient between simulated FC
(sFC) and empirical FC (eFC) and SC (eSC) depending on the model fit-
ting modality. For each subject and simulation condition, 5 parameter
planes of the functional similarity or functional model fitting modality (cor-
relation between sFC and eFC) were obtained corresponding to 5 eFCs.
In addition, one parameter plane of the structure-functional similarity or
structure-functional model fitting modality (correlation between sFC and
eSC) was also calculated. From each parameter plane, we selected the
optimal (C, 7)-parameter point, where the maximal correlation between
the simulated and the empirical data was reached. For the functional
model fitting the maximal similarity can be referred to as goodness-of-fit
of the model.

2.3. Effects of different WBT conditions

We revealed the effects of the varying WBT density on the model-
ing results by evaluating its impact on 1) the graph-theoretical network
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properties of empirical structural connectome, 2) patterns of the optimal
model parameters in the model parameter space, and 3) model perfor-
mance as given by the quality of the model fitting over simulation con-
ditions. Based on the results from the three approaches, we introduced
three criteria (see below) for differentiation of the influence of the WBT
density on the modeling results for individual subjects. To do this, we
stratified the entire subject population by splitting it into several sub-
groups according to the mentioned criteria based on (i) the relationships
between the network properties and the results of the functional model
fitting over WBT conditions, (ii) distributions of the optimal model pa-
rameters of the structure-functional model fitting, and (iii) positive and
negative slopes (increments) of the goodness-of-fit values (model per-
formance) across the two extreme cases of the considered 10K and 10M
WRBT streamlines for individual subjects.

2.3.1. Structural architecture and network properties over WBT conditions

To investigate the impact of the varying WBT density on the archi-
tecture of structural networks, we calculated graph-theoretical network
properties from SC and PL for each subject, WBT condition and atlas.
The considered 6 network properties (4 local properties and 2 global
properties) included the weighted node degree, clustering coefficient,
betweenness centrality, local efficiency, global efficiency and modular-
ity, which were calculated by the brain connectivity toolbox version
2019-03-03 in Matlab (Rubinov and Sporns, 2010). For the local prop-
erties, both the average (Avg.) and the standard deviation (S.D.) were
calculated.

For every subject, we calculated the Pearson correlation between the
values of a given network measure and the maximal functional model
fitting (goodness-of-fit) values across varied WBT densities. Then, for
every considered network measure, we split the subjects into two sub-
groups with positive and negative correlations. After that, we performed
the two-sample one-tail t-test to compare the functional model fitting be-
tween the split subgroups. Based on the results of the t-test, we selected
the network properties, where one of the subgroups showed significantly
higher functional model fitting than the other subgroup (Fig. A5 in Sup-
plementary materials). Finally, we overlapped all selected subgroups
with higher goodness-of-fit over all selected network properties and re-
ferred to this group as pattern 1. Consequently, the rest of subjects were
united into the second group referred to as pattern 2. We thus stratified
all subjects into two groups/patterns with potentially different impact
of the WBT conditions on the modeling results.

2.3.2. Impact of time delay on the model fitting

For another stratification criterion, the optimal model parameters of
the maximal correspondence between sFC and eSC were divided into
two clusters as suggested by the bimodal distribution splitting small
and large values of the optimal time delay (Fig 6). Since subjects can
move between the parameter clusters when the total number of the WBT
streamlines varies from 10M to 10K, we separated the subjects into five
classes: Always staying in cluster 1 (From 1 to 1) or in cluster 2 (From
2 to 2), only once moving either from cluster 1 to cluster 2 (From 1
to 2) or in opposite direction (From 2 to 1), and performing multiple
switching between the two clusters (Multiple). This approach based on
the distribution of the optimal model parameters was used as the second
criterion for stratification of subjects.

2.3.3. Variation of the model performance

The last stratification criterion was based on the behavior of the opti-
mal goodness-of-fit values when the number of WBT streamlines varied.
To quantify it, we calculated the increment of the maximal similarity be-
tween sFC and eFC matrices of the concatenated session for every indi-
vidual subject when the number of the WBT streamlines increases from
10K to 10M. Then, all subjects were divided into two subgroups exhibit-
ing either positive or negative slopes (increments) of the goodness-of-fit
behavior versus the number of WBT streamlines (Fig 7). According to
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Table 1
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Sensitivity of the considered graph-theoretical network properties to the variation of the WBT
density as revealed by the non-parametric one-way analysis of variance (Kruskal-Wallis ANOVA)
test. The corresponding p-values are presented in the right columns of the tables, where the bold
p-values indicate that the respective network property significantly changes (Bonferroni corrected
p < .05) when the number of WBT streamlines varies in the range indicated in the left columns of
the tables. The results are shown for the Schaefer atlas (upper table) and the Harvard-Oxford atlas
(lower table), and the abbreviations in the upper rows denote the network properties. WD: average
weighted node degree, CC: average clustering coefficient, BC: average betweenness centrality, LE:
average local efficiency, GE: global efficiency, and MQ: modularity Q.

Schaefer atlas WD CC BC LE GE MQ
10K, 50K, 100K, 500K, 2M, 10M  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
50K, 100K, 500K, 2M, 10M  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
100K, 500K, 2M, 10M  <0.001 <0.001 0.009 <0.001 <0.001 <0.001

500K, 2M, 10M 0.994 <0.001 0.920 <0.001 0.999 0.011

2M, 10M 0.916 <0.001 0.929 <0.001 0.947 1.000

Harvard-Oxford atlas WD cC BC LE GE MQ
10K, 50K, 100K, 500K, 2M, 10M  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
50K, 100K, 500K, 2M, 10M  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
100K, 500K, 2M, 10M 0.992 <0.001 0.012 <0.001 1.000 <0.001

500K, 2M, 10M 0.996 <0.001 1.000 <0.001 1.000 0.005

2M, 10M 1.000 <0.001 1.000 <0.001 1.000 0.913

this criterion, the subjects were stratified into two subgroups demon-
strating the best functional model fitting for either maximal or minimal
number of the WBT streamlines considered. Consequently, we used all
three criteria for the three-step stratification analysis (Fig 8).

3. Results

We investigate all three stratification criteria mentioned in the Meth-
ods (Section 2.3) and apply them to subject differentiation. This provides
an insight into the impact of the WBT density on the model performance
for individual subjects and suggests optimal configurations of the data
processing parameters. To follow the stratification steps, the obtained
results will be presented in parallel for the two considered brain parcel-
lations based on the Schaefer and Harvard-Oxford atlases and compared
between them.

3.1. Impacts of WBT density on structural connectome

Figure 2 illustrates the similarities between SC and PL (Fig 2 a and
¢) and behavior of the weighted node degree, clustering coefficient, be-
tweenness centrality, local and global efficiencies and modularity calcu-
lated from the normalized SC matrix over 6 WBT conditions (10K, 50K,
100K, 500K, 2M, and 10M streamlines) for the two atlases (Fig 2 b and
d). The similarity of the eSC matrices to the 10M case remains relatively
high except for the largest drop at 10K (Fig 2 al and c1). On the other
hand, the PL matrices have low similarity over the 6 WBT conditions,
very quickly deviate from the 10M case, exhibit practically no correla-
tion already for 100K and weakly anti-correlate for 10K (Fig 2 a2 and
c2). We also performed a non-parametric one-way analysis of variance
(Kruskal-Wallis ANOVA) test over the WBT conditions (Table 1).

By increasing the number of streamlines from 10K to 10M, the num-
ber of network edges increases, and the nodes become densely con-
nected, which resulted in monotonically increasing average binarized
(discarded weights of edges) node degrees as expected (Fig. Al in Sup-
plementary materials). However, the weighted node degree based on
the normalized count matrices (SC divided by its mean) used in model
(Eq 1) shows relatively stationary behavior across the WBT conditions,
especially, for dense WBT (Fig 2 bl and d1 and Table 1 WD). Decreas-
ing the number of streamlines, for example, from 10M to 10K (by 1000
folds) resulted in the corresponding reduction of the averaged weighted
node degree of the normalized SC by 6% and 33% for the Schaefer and
Harvard-Oxford atlases, respectively (Fig 2 b1 and d1). Similar station-
ary behavior can also be observed for the average betweenness centrality

and the global efficiency, especially, for dense WBT conditions (Fig 2 b3,
b5, d3, and d5 and Table 1 BC and GE). The network modularity shows
a weak monotonic increase when the WBT density increases (Fig 2 b6
and d6). For these network measures, relatively moderate changes were
observed when the number of streamlines varies from 10M to 10K. This
indicates that the connectivity in the model is still relatively strong, and
some other properties of the network architecture are to a large extent
preserved even for the extreme case of 10K WBT.

On the other hand, the average clustering coefficient, local efficiency
and their variances strongly decrease when the WBT density increases
(Fig 2 b2, b4, d2, and d4 and Table 1 CC and LE). In summary, WBT
density modulates the graph-theoretical network properties and results
in similar tendencies at the group level through varying WBT density
for both atlases. In particular, the clustering coefficient and the local
efficiency are significantly different across the WBT conditions already
between 2M and 10M cases (Table 1 CC and LE), where very high sim-
ilarities of SC can be observed (Fig 2 al and c1).

3.2. Impacts of WBT density on model fitting

Figure 3 shows the obtained parameter planes and the distributions
of the optimal model parameters over all subjects and simulated condi-
tions for the two fitting modalities (sFC versus eFC and sFC versus eSC).
The goodness-of-fit between sFC and eFC was observed for small delays
for both atlases. This is illustrated in Fig 3 a-d, where the red dots de-
picting large similarity values are concentrated on the left side of the
parameter plane demonstrating, however, different cluster shapes for
the Schaefer and the Harvard-Oxford atlases. We also note here that the
latter atlas could lead to a stronger fit between the sFC and eFC, compare
Fig 3 a and c. In contrast, in the case of the structure-functional model
fitting between sFC and eSC (Fig 3 e-h), both atlases demonstrate a sim-
ilar range of the correspondence (correlation) between simulated and
empirical data, however, the maximal similarity can also be attained
for large delay.

During the model validation for individual subjects under the 12
considered conditions (6 WBTs x 2 atlases), we also searched for the
optimal model parameter, where the maximal similarity between sFC
and empirical data (eFC and eSC) was achieved. The distributions of
such optimal parameters are depicted in Fig 3 b, d, f, and h for the two
fitting modalities and the two brain atlases. In agreement with these re-
sults, the best fit between sFC and eFC is attained for small delays (Fig 3
b and d), whereas the strongest structure-function correspondence be-
tween sFC and eSC can also be observed for large delays (Fig 3 f and h).
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Fig. 2. Impact of the WBT density on the structural architecture. Network measures of the structural connectome and similarity between them calculated for
different WBT densities (numbers of streamlines) for (a, b) the Schaefer atlas and (c, d) the Harvard-Oxford atlas. (a, c¢) Similarity of the connectivity matrices
(al, c1) SC and (a2, c2) PL calculated for different tractography densities by Pearson correlation across all subjects. (b, d) Variations of the network properties
calculated from the normalized SC matrix versus WBT density. The plot indices stand for 1: average weighted node degree, 2: average clustering coefficient, 3:
average betweenness centrality, 4: average local efficiency, 5: global efficiency, and 6: modularity as indicated in the plot titles. In each plot the thin gray lines depict
the behavior of the illustrated quantities for individual subjects together with the box plots, where the red lines, blue boxes and red pluses indicate the medians, the
interquartile ranges, and the outliers, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 3. Parameter planes and the distributions of the optimal model parameters (C, r)for the two model fitting modalities between simulated and empirical
data. Parameter planes are averaged (1-3) over all subjects (n = 351) separately for simulation conditions (10K, 500K, and 10M WBT densities) as indicated in
the plots (see supplementary Fig. A10 for all conditions). The correspondence between the simulated and empirical data was calculated between (a-d) simulated
FC and empirical FC and (e-h) simulated FC and empirical SC for (a, b, e, f) the Schaefer atlas and (c, d, g, h) the Harvard-Oxford atlas. The Pearson correlation
between the connectivity matrices is depicted by color ranging from small (blue) to large (red) values. (b, d, f, h) Distributions of the optimal model parameters of
the best model fitting calculated for all individual subjects and simulation conditions. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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Fig. 4. Results of the model fitting to the empirical data versus 12 simulation conditions (6 WBTs x2 atlases). The distributions of the maximal similarities
for individual subjects between (a) simulated FC and empirical FC and (b) simulated FC and empirical SC are shown as violin plots for 12 conditions of the WBT
streamline numbers indicated on the horizontal axes for the Schaefer atlas (blue violins) and the Harvard-Oxford atlas (orange violins). The results of the pairwise
comparisons between the conditions (Wilcoxon signed rank one-tail test) are also indicated with the corresponding p-values in the cases of statistically significant
differences (Bonferroni corrected p < .05). For the box plots the red lines, blue boxes and red pluses indicate the medians, the interquartile ranges, and the outliers,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In the latter case, the parameter distributions apparently demonstrate a
two-cluster shape of small and large delays, which is addressed in detail
below.

Together with the optimal model parameters for individual subjects,
we also collected the corresponding maximal similarities between the
simulated and empirical data, which are illustrated in Fig 4 for the 12
simulated conditions and for the two fitting modalities of the correspon-
dence between sFC and eFC (Fig 4a) and between sFC and eSC (Fig 4b).
Results of the functional model fitting in all conditions (Fig 4a) were
not from the normal distributions, where the null hypothesis was re-
jected by x2 goodness of fit test with p < .05. Also in the case of the
structure-functional model fitting (Fig 4b) many conditions were not
from the normal distributions. Therefore, Kruskal-Wallis test was used
for testing significant difference in all conditions (across tractography
densities). Consequently, we performed Wilcoxon signed rank one-tail
test to evaluate whether the maximal similarities between the simulated
and empirical data for one condition are significantly higher or lower
than those for the other conditions (see p values in Fig 4).

For the functional model fitting (sFC versus eFC) and the Schaefer at-
las (Fig 4a, blue violins), the models with 2M and 10M WBTs performed
better than with the other WBTs, and the performance of the model de-
creased when the number of streamlines decreased. On the other hand,
the functional model fitting for the Harvard-Oxford atlas revealed the

optimal condition at 50K or 100K WBT (Fig 4a, orange violins). Fur-
thermore, the model could fit better to eFC for the Harvard-Oxford atlas,
which was also observed in Fig 3. For the structure-functional model fit-
ting (sFC versus eSC), the situation is different, where 2M or 10M WBTs
are preferable for the strongest correspondence between the simulated
and empirical data for both atlases demonstrating approximately similar
extent of the maximal model fitting (Fig 4b, see also Fig 3).

3.3. Relationships between network properties and the functional model
fitting

As discussed above, the WBT density modulates the structural con-
nectome. Consequently, it can also influence the dynamics of the model
(Figs 3 and 4). In this section, we investigate the effects of the graph-
theoretical network properties modulated by WBT density on the model
performance.

For each of the considered 6 network properties, we tested the re-
lationships between their values and the maximal similarity between
sFC and eFC as given by the Pearson correlation across 6 WBT con-
ditions for each individual subject. The considered network properties
demonstrate a pronounced agreement with the goodness-of-fit values at
the level of individual subjects (Fig 5 al and bl). Some distributions
of the correlation coefficients are significantly shifted from zero except



K. Jung, S.B. Eickhoff and O.V. Popovych

Neurolmage 237 (2021) 118176

al Schaefer atlas b1 Harvard-Oxford atlas
= 1 2 + + + = 1 e H a N s e
e b $ i i 3 - f 'y 4} 2o
Y + i < 4 ) 4
‘0 05 ¥ s i S 05 2 it
A + e [4
E \‘ ¢ be § H i E ; :
S« O i i
g | : L |8 o
T.05 g i i i ¢ - B®.05 g 3
[ t [ x
b + » ¥
: i oA A4 Y -
O -1 TR, 2 O -1 Kk
% C C g < (e < ,é
W o 9 2 RS W A A S
vﬂ B o S
2 Schaefer Harvard-Oxford
a2z ~ j A *k
8‘0-29 b4 (Network properties l J ki T
©0.28
¢ Avg. Average l
o 027 S.D. Standard deviation
'Y
»0.26 :
- WD Weighted node degree
Fo.25 = cC Clustering coefficient
-] Pattern 1 (N = 82) BC Betweenness centrality —3-Pattern 1 (N = 173)
§::: —3-Pattern 2 (N = 269) EE IG_c{cgllef;i_c'ie.ncy —3-Pattern 2 (N = 178)
< 0. —- ; obal efficienc
-g ‘Wilcoxon rank sum one-tail test (p < 0.05) Mg Modularity Q y “Two-sample one-tail t-test (p < 0.05)
8 0.22 Error bar: Standard error L ) Error bar: Standard error

10K 50K 100K 500K 2M 10M

No. WBT streamlines

10K 50K 100K 500K 2M 10M

No. WBT streamlines

Fig. 5. Relationships between the network properties and the results of the functional model fitting. Correlation between the network properties and maximal
similarity between sFC and eFC for individual subjects and fitting results for stratified subjects are shown for (a) the Schaefer atlas and (b) the Harvard-Oxford atlas.
(al, bl) Distributions of the Pearson correlation coefficients calculated across 6 WBT conditions for individual subjects between a given network property indicated
on the horizontal axes and the goodness-of-fit values. The gray dots represent the values for individual subjects, and the box plots illustrate the medians (red lines),
the interquartile ranges (blue boxes) and the outliers (red pluses). The asterisks on the x-axes indicate statistically significant differences in the goodness-of-fit values
between the two subgroups of subjects with positive and negative correlations (p < .05 of two-sample one-tail t-test). (a2, b2) The results of the functional model
fitting versus different numbers of the WBT streamlines for the two subject subgroups of pattern 1 and pattern 2 as indicated in the legends based on the statistically
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the standard error, and the asterisks denote the simulation conditions, where the pattern 1 and 2 exhibit significantly different extend of the similarity between
simulated and empirical data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

for Avg. WD, S.D. BC, and GE for the Schaefer atlas and S.D. BC for
the Harvard-Oxford atlas (see Fig 5 for abbreviations). The presented
results are reproducible to retest over individual 5 sessions (4 fMRI ses-
sions and the concatenated case) and merged data of the goodness-of-fit
values (see supplementary Fig. A2). Based on the results illustrated in
Fig 5 al and bl and supplementary Fig. A2, we can conclude that the
changes in the model performance for the individual subjects are related
to the changes in the network properties across different WBTs.

The distributions of the correlation coefficients between the network
properties and the goodness-of-fit values may differ for different atlases
(Fig 5 al and b1l) indicating a complex relationship between the struc-
tural connectome and modeling results. To address such relationships in
more detail, we split the subjects into two subgroups of positive or nega-
tive correlation for every considered network metric. Then we intersect
the groups with highest goodness-of-fit for the network metrics marked
by asterisks in Fig 5 al and b1 with significant difference between the
subgroups and stratify the subjects into two patterns as explained in
Methods (Section 2.3.1, see also Figs. A3 - A5 in Supplementary mate-
rials).

Based on the results of the tests, for the Schaefer atlas, we selected
subjects exhibiting positive correlation with the standard deviation of
weighted node degree (S.D. WD +) and negative correlation with the
average betweenness centrality (Avg. BC-) for pattern 1, which have sig-
nificantly higher values of the goodness-of-fit of the model than those of
the complementing subgroups (S.D. WD- and Avg. BC+), respectively.
The intersection of the two selected subgroups, i.e., S.D. WD+ (n = 93)
N Avg. BC- (n = 329) = 82, constituted the stratified pattern 1, whereas
the rest of the subjects (n = 269) were grouped into pattern 2.

We found that the two patterns of the split subjects subgroups
demonstrate significantly different quality of the goodness-of-fit of the
model depending on the WBT conditions (Fig 5a2). For statistical test-

ing of the differences between the patterns 1 and 2, y? goodness of fit
test was used to test for a normal distribution for each condition of pat-
tern 1 and pattern 2. The Wilcoxon rank sum one-tail test was then used
for a non-parametric test of the difference between the patterns if the
null-hypothesis for a normal distribution was rejected by the y? test.
Otherwise, two-sample one-tail t-test was used for comparing normal
distributions of pattern 1 and pattern 2. The significant differences be-
tween the patterns are indicated by asterisks in Fig 5a2, which is the case
for any WBT density. We also found that the fitting values for both pat-
terns 1 and 2 monotonically increase for higher WBT density (Fig 5a2).
In addition, we tested the changes of the goodness-of-fit of the model
for each pattern when the WBT density varies by using Wilcoxon signed
rank test. As a result, for the Schaefer atlas, 500K or more streamlines
of the pattern 1 and 2M or more streamlines of the pattern 2 showed
significantly higher goodness-of-fit values than for any sparser WBT con-
ditions.

For stratification for the Harvard-Oxford atlas, we selected subjects
from the intersection of the following subgroups derived as above of pos-
itive and negative correlations with the network metrics, which showed
significantly higher goodness-of-fit values than the complementing sub-
groups: Avg. CC-, S.D. CC-, Avg. BC-, Avg. LE-, S.D. LE-, GE+, and MQ +
(see Fig 5 for abbreviations). As above, the sign “+” or “-” after the
property name indicates the corresponding subgroups of subjects ex-
hibiting positive or negative correlations with the considered network
properties, respectively. Such an intersection of the subgroups resulted
in a stratified pattern 1 containing 173 subjects complemented by the
others, i.e., 178 subjects of pattern 2.

We here found that patterns 1 and 2 exhibit different behavior of
the goodness-of-fit values when the WBT density varies (Fig 5b2). Pat-
tern 1 monotonically increases for large WBT density as before, whereas
pattern 2 apparently demonstrates a non-monotonic behavior with an
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Fig. 6. Clusters of the optimal model parameters of the maximal similarity between simulated FC and empirical SC. The optimal parameters for (a) the
Schaefer atlas and (b) the Harvard-Oxford atlas from Fig 3 f and h, respectively, (n = 2106 values for 351 subjects and 6 WBTSs) were split into two subgroups
as illustrated in the two lower plots, where the one- and two-dimensional distributions of the optimal parameters are depicted. The upper plots with error bars
show the maximal similarity of the functional model fitting between simulated FC and empirical FC of the concatenated fMRI session for the subjects from the two
clusters versus the number of the WBT streamlines. The alluvial plots to the right schematically illustrate the interchange of the cluster members when the number
of streamlines varies from 10M to 10K. The white numbers in each WBT step indicate the number of subjects in the clusters.

optimal point at 50K of the WBT streamlines. Statistical testing with These results also establish a connection between the two fitting
Wilcoxon signed rank test demonstrated that 100K or more streamlines modalities and the time delay, where the impact of the latter was not
of pattern 1 showed significantly higher goodness-of-fit values than any observed in the distributions of the optimal parameters of the functional
sparser WBT condition. However, 50K streamlines of pattern 2 is the op- similarity between sFC and eFC (Fig 3 b and d) and can only be revealed
timal condition that shows significantly higher correspondence between by mediation of the structure-functional correspondence. Another corre-
the simulated and empirical data than for any other condition, sparser spondence can be established between the values of the optimal global
of denser WBT. delays and the natural frequencies of the phase oscillators (Eq 1). To

Based on the presented results, we can conclude that the optimal evaluate such a dependence, the broadly distributed positive global de-
number of the WBT streamlines should be considered large (~500K- lays in cluster 2 were correlated with the mean natural frequencies (f;)
10M) for the Schaefer atlas (Fig 5a2). Interestingly, the best goodness- averaged over all oscillators (Eq 1). The mean natural frequency of the
of-fit of the model for the Harvard-Oxford atlas can be reached for model is also varying across subjects, and we found a well-pronounced
much sparser WBT at ~50K streamlines for more than 50% of subjects negative correlation between the mean natural frequencies and the opti-
(Fig 5b2). mal delays for the maximal structure-functional similarity between sFC

and eSC (see Figs. A7 and A8 in Supplementary materials). This indicates
that subjects with slow BOLD oscillations are modeled by system (Eq 1)
with large optimal delay if the best correspondence between structure
and function has to be achieved.

When the number of the WBT streamlines varies, subjects may ex-
change their membership in the two clusters (Fig 6, the vertical alluvial
plots). Interestingly, for the Schaefer atlas, the ratio of subjects in the
two clusters is gradually changing when WBT is getting sparser (from
10M to 10K), where more and more subjects move to cluster 1 approx-
imately balancing the subgroup sizes at 10K case (Fig 6a, the alluvial
plot). In contrast, there are only small exchanges of the subjects between
clusters for the Harvard-Oxford atlas keeping the group sizes approxi-
mately constant for all WBT conditions (Fig 6b, the alluvial plot). Cluster
2 contains most of the subjects as is for both atlases for the case of 10M
of the WBT streamlines. We used the splitting of the subjects into the
discussed two clusters as the second criterion of the stratification anal-
ysis.

It is also important to observe that the structure-functional corre-
spondence between the empirical connectomes eFC and eSC exhibited
weak opposite relationships between parameter clusters and across the

3.4. Effects of time delay on model validation

Based on the clustered distributions of the optimal model parame-
ters of the maximal structure-functional similarity between sFC and eSC
(Fig 3 f and h), we divided the optimal parameter points and the corre-
sponding subjects into two clusters (Fig 6). In such a way, the cluster of
parameter points with small delay (cluster 1) was split from the other
points characterized by relatively large delay (cluster 2) based on their
bimodal distributions (Fig 6, the red dotted lines in the histograms in
the bottom plots). By dividing the subjects into the two subgroups corre-
sponding to the above clustering of their optimal parameters, we found
that the goodness-of-fit values of the functional model fitting are signifi-
cantly higher in cluster 2 than in cluster 1 consistently for all simulation
conditions (all WBTs and both atlases), see Fig 6 (upper plots). Similar
effects can also be observed for the structure-functional model fitting be-
tween sFC and eSC (see Fig. A6 a2 and b2 in Supplementary materials).
The time delay in coupling thus played a constructive role in the model
validation against empirical data and led to a better correspondence for
structure-functional as well as functional model fitting.

10
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number of the WBT streamlines as compared to the correspondence be-
tween simulated and empirical data (see Fig. A6 al and b1 in Supple-
mentary materials). This indicates a nontrivial character of the reported
results that do not directly follow from the empirical structure-function
correspondence.

3.5. WBT-Induced changes of model performance

In the previous sections, we observed that the behavior of the
goodness-of-fit values versus the WBT conditions is not akin to that of
the other atlas. We, therefore, explicitly searched for such divergent dy-
namics and looked for the subjects with the best model performance
for the most sparse or the most dense WBT. The subjects are then split
into two subgroups based on the opposite behavior of the model per-
formance when the number of WBT streamlines varies, see Methods
(Section 2.3.3) for detail. Figure 7 illustrates the different dynamics of
the goodness-of-fit values of the two subgroups of subjects for the two
atlases.

As reported before, the maximal similarity between sFC and eFC
monotonically increases for the Schaefer atlas when the WBT is getting
denser (Figs. 4 - 6). We thus explicitly searched for such conditions, i.e.,
when the goodness-of-fit was larger for 10M case than for 10K case, and
the corresponding line of the model performance had a positive slope.
We found that the subjects split very unevenly according to such crite-
rion, and most of them (n = 339) exhibited positive slope, where the sim-
ilarity between simulated and empirical data monotonically increases
when the number of streamlines increases (Fig 7a). Each split subgroup
was tested for a normal distribution by y? goodness of fit test over WBT
densities. The null hypothesis of the y? test was rejected for each sub-
group and each condition. Therefore, we performed Wilcoxon signed
rank test. As a result, for the subject subgroup with the positive slope
the case of 2M or more WBT streamlines showed significantly higher
goodness-of-fit of the model than any sparser WBT condition (Fig 7a,
red curve).

In the case of the Harvard-Oxford atlas, the goodness-of-fit values
may exhibit a non-monotonic behavior and attained the maximal values
at 50K WBTs (Figs. 4 and 5). After stratification according to the third
criterion, the both subgroups contain large fractions of the entire subject
population with the positive slope (n = 248) and the negative slope (n
= 103) (Fig 7b). For the statistic analysis, the null hypothesis of the y?
test was not rejected, and we thus performed the two-sample paired t-
test. The test resulted in the subgroup with the positive slope showed
significantly higher goodness-of-fit of the model with 100K or more WBT
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streamlines than any sparser WBT condition (Fig 7b, red curve). On the
other hand, the subgroup with the negative slope showed significantly
higher goodness-of-fit of the model with 50K or less WBT streamlines
than any denser WBT condition (Fig 7b, blue curve).

3.6. Stratification analysis

As investigated in the previous sections, the entire subject popula-
tion can first be split into two groups based on the two patterns of the
relationships between network properties and the functional model per-
formance (Fig 5). Second, the subjects can be split based on the clus-
tered distribution of the optimal parameters of the structure-functional
maximal similarity between sFC and eSC (Fig 6). Third, different be-
havior of the goodness-of-fit values of the best correspondence between
sFC and eFC can result in positive and negative slopes versus the WBT
conditions, which can also be used for subject stratification (Fig 7). By
combining all three approaches, we illustrated stratification results in
the alluvial plots in Fig 8. Here the proportions of the stratified subjects
are shown when the above stratifying criteria are consequently applied
to the entire subject population for each atlas. The stratified subjects
show different extent and behavior of the goodness-of-fit values of the
functional model fitting over the WBT conditions (Fig 8).

In the case of the Schaefer atlas, according to the first criterion, we
can expect that subjects of pattern 1 form a relatively small fraction
(23%) of the entire subject population, but they have shown higher
goodness-of-fit (Fig 5a2 and Fig 8a2). The second stratification step in
Fig 8 reflects the interchanging behavior between the parameter clusters
observed in Fig 6a. In particular, the stratified group 3 (parameter clus-
ter 2 of large delay) show better performance than the stratified group 2.
Finally, the third criterion practically does not differentiate the subjects
into positive and negative slopes, see also Fig 7. The declining curves of
the goodness-of-fit when the number of the WBT streamlines decreases
imply that the optimal number of the total streamlines for the simula-
tion should be considered large, for example, more than 500K: 2M or
10M of the WBT streamlines (Fig 8a2).

For the Harvard-Oxford atlas, subjects stratified into pattern 1 by
the first criterion show a monotonic increment of the goodness-of-fit
for dense WBT as expected (Fig 8b2, see also Fig 5b2). In addition, we
can also expect that the subjects from pattern 2 will have the maximal
model performance for sparse WBTs (Fig 5b2 and Fig 8b2). In the second
stratification step, the overwhelming majority of subjects from pattern
1 were sorted to the group of persistent members of cluster 2, i.e., the
subgroup with large delay for the best structure-functional model fitting
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(Fig 8b1, see also Fig 6). Finally, the subjects in pattern 2 can still be split
into two subgroups with the inclining and the declining curves of the
goodness-of-fit values by the third criterion (Fig 8b2, stratified groups 2
and 3). This can further refine the differentiation of subjects of the best
model performance at sparse WBT density (see also Fig 7).

The model evaluation with the Harvard-Oxford atlas shows different
optimal conditions than that for the Schaefer atlas (Fig 8b2). The opti-
mal streamline number may depend on the stratification subgroups to
which the subject belongs, and which exhibited very different behavior
of the goodness-of-fit when the number of streamlines varied (Fig 8b2).
For example, the optimal number of streamlines for a better model per-
formance could range from 10M to 100K for the subjects from subgroup
1 in Fig 8b2 (solid red curve). On the other hand, for more than 20%
of subjects (n = 80) of the entire subject population, i.e., for those from
the stratified group 3 (Fig 8b2, dashed blue curve), the optimal condi-
tions are at ~50K WBT streamlines, and more streamlines may lead to
the degradation of the quality of the model validation. For other 18%
of subjects (n = 66, group 3 in Fig 8b2, solid blue curve) a sparse WBT
can also be a reasonable option.

4. Discussion

The purpose of the current study was to explore how the process-
ing of the neuroimaging data can influence the dynamics and valida-
tion of the whole-brain mathematical dynamical models informed by the
empirical data. We considered several simulation conditions based on
varying data processing parameters, such as the number of total stream-
lines of WBT and brain atlases. While the latter defined how the brain
is parceled into several brain regions that are considered as network
nodes in the model, the former influenced the underlying SC (stream-
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line counts) and PL (streamline path lengths) used for the calculation of
the coupling weights and time delays in the coupling between nodes.
A straightforward interpretation of the investigated number of WBT
streamlines as a count of anatomical fiber bundles should be made with
caution which was extensively discussed by Jones et al. (2013). Instead,
the reconstructed streamlines can be considered as a good guess of the
white matter connectivity (Caminiti et al., 2013; Jones et al., 2013; Ver-
gani et al., 2014). We discussed how the WBT density can influence the
structural information fed to the model and the corresponding model-
ing results for the considered brain atlases. We found that the parcella-
tion with different atlases showed similar changes of the architecture of
the structural networks, but distinct trends of the goodness-of-fit of the
model to the empirical data across the number of WBT streamlines. Con-
sequently, we suggested optimal configurations of the considered data
and model parameters for the best model fit at the group level as well as
for personalized models of individual subjects based on the properties
of the empirical and simulated data.

The applied model-based approach followed the line of research sug-
gested and developed in many modeling studies, see, for example, the
papers (Breakspear et al., 2010; Cabral et al., 2011; Deco et al., 2017;
Fukushima and Sporns, 2018; Honey et al., 2009; Ponce-Alvarez et al.,
2015; Popovych et al., 2019) and references therein. The potential of
the whole-brain dynamical models to explain the properties of the brain
dynamics and structure-function relationship was demonstrated by a de-
tailed investigation of the correspondence between empirical and simu-
lated brain connectomes. At this, the connectivity patterns of the under-
lying structural network as related to the inter-node coupling strengths
and delays can play a crucial role for observing a pronounced structure-
function agreement (Popovych et al., 2011; Ton et al., 2014). It is thus
important to extract the empirical SC and PL used for evaluation of pa-
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rameters of the model connectivity as plausible as possible in order to
obtain biologically realistic modeling results (Knock et al., 2009). With
this respect, the structure-functional model fitting can be higher than
the functional goodness-of-fit as we observed in the current study. One
possible explanation might be related to that the empirical SC serves as
the underlying backbone of the whole-brain modeling, and simulated FC
generated by such models may better replicate the underlying network
structure than empirical FC. However, additional investigation is neces-
sary to clarify this question. The current study focuses on the impact of
tractography density on the modeling.

4.1. Evaluating structural architecture for modeling

Within the framework of the modeling approach, the model parame-
ters can be varied in a broad range and sense to evaluate their impact on
the simulated dynamics. As related to the discussed network topology,
beyond the variation of the global coupling strength, the network edges
approximating the anatomical connections between brain regions can
be removed to obtain a better fit between simulated and empirical FC
(Cabral et al., 2012). Aiming at the best correspondence between simu-
lated and empirical data, new inter-region anatomical connections were
allowed to be created, or existing structural connections to be rewired
according to algorithms based on the differences between the simulated
and empirical FC including the gradient-descent method (Deco et al.,
2019; 2014). The model connectivity can be composed of both empiri-
cal SC extracted from dwMRI data and local intra-cortical connections
incorporated into the model based on the distance-dependent approxi-
mations (Proix et al., 2016).

Among many possible ways of SC variation for the best model fit-
ting, which might also require additional justifications, we propose to
stay within the framework of realistically extracted signals from dwMRI
data and consider the well-established approaches for the data process-
ing. In this study, we used state-of-the-art techniques for calculation of
WBT and SC (Tournier et al., 2019) and investigated the impact of a
constructive parameter for the structural connectome, the number of
extracted streamlines on graph-theoretical measures of SC, and their in-
fluence on the modeling results.

As discussed in Fig 2 and Table 1, the variation of the WBT density
affects the properties of the model networks calculated from the struc-
tural connectome, especially, the PL matrices, where the edges with rel-
atively small numbers of streamlines are sensitive to reducing the total
number of tracking trials. Therefore, SC extracted from relatively sparse
WBT with small number of streamlines may not guarantee a higher re-
producibility with stable network properties, where some edges will be
disconnected or reconnected from time-to-time, when streamlines will
be generated. We, nevertheless, considered an extreme case of 10K WBT
streamlines in this study to illustrate the effects observed for very sparse
WBT density.

4.2. Graph-theoretical network properties across conditions

For the extraction of the brain structural and functional connectomes
and for setting up the model network, we used two paradigmatically
distinct brain atlases. These are the Schaefer atlas (Schaefer et al., 2018)
that is based on functional MRI data, and the Harvard-Oxford atlas of
anatomy-related parcellation (Desikan et al., 2006) that is based on the
landscape of gyri and sulci on the cortical surface. We found that the
graph-theoretical properties of the structural networks built based on
these two parcellations are changing with similar tendencies across the
considered WBT conditions for both atlases (Fig 2 and Table 1).

Some of the considered network properties exhibit high sensitivity
to the variations of the WBT density, for example, the clustering coeffi-
cient (CC) or the local efficiency (LE), see Table 1. On the other hand,
the weighted node degree (WD) or the global efficiency (GE) manifested
significant changes only when the number of the calculated WBT stream-
lines was decreased from 10M to 100K or 50K, i.e., 100-200 times.
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The sensitivity was stronger for the Schaefer atlas. These findings might
be of importance when the discussed network properties influence the
modeling results. We also found that the mentioned network metrics
(CC and LE) with sensitive dependence on the WBT density strongly
anti-correlate with the goodness-of-fit of the model for the Schaefer at-
las (Fig 5al), while the dependence is weak with insensitive network
measures (WD and GE). Given the impact of the WBT density on the
properties of the structural networks (Fig 2), this may explain the clear
monotonic behavior of the goodness-of-fit for the Schaefer atlas versus
the number of streamlines (Fig 5a2). The situation is different for the
Harvard-Oxford atlas, where the relationship with CC and LE is in aver-
age less pronounced, whereas the correlation with WD and GE is more
enhanced (Fig 5b1). This may explain the apparently mixed behavior of
the goodness-of-fit for this brain atlas (Fig 5b2).

In summary, some of the network metrics are characterized by differ-
ent relationships with the results of the model validation for the varying
WRBT density for different parcellations, see also supplementary Figs. A3
and A4 for the relationships of all considered network properties. There-
fore, even if the tractography density modulates the graph-theoretical
network properties in similar changes for the considered atlases as we
observed, it can however influence the dynamics of mathematical mod-
els in different ways depending on the used brain parcellation.

4.3. Role of time delay in the modeling

It is interesting to note here that the best agreement between sim-
ulated and empirical functional data (sFC and eFC) was attained for
the considered model at small (zero) delays (Fig 3). It is therefore safe
to consider such a type of model simulating ultra slow BOLD dynam-
ics without delay in coupling (Deco et al., 2019; 2017; Ponce-Alvarez
et al., 2015). Nevertheless, the goodness-of-fit for the model with de-
lay (including zero delay) exhibits around 9% larger values than that
without delay (zero delay only), see Fig. A9 a and b in Supplementary
materials. On the other hand, the role of delay in coupling is apparent
for the structure-functional (sFC-eSC) model fitting, where the corre-
spondence between sFC and eSC is also enhanced by around 14% for
the model with delay when compared to the case without delay (Fig.
A9 c and d in Supplementary materials).

We also reported on the clustered distributions of the optimal model
parameters for the structure-functional model fitting sFC-eSC and their
behavior (migration between clusters) when the WBT density varies for
the two considered brain atlases (Fig 6). Such a behavior of the opti-
mal parameters might be related to the performance of the model at
the group level. Indeed, we observed that subjects from the parameter
cluster with large delay demonstrated better quality of the model vali-
dation for both functional and structure-functional model fittings (Fig 6
and supplementary Fig. A6). In other words, if the optimal parameters
for the maximal sFC-eSC correspondence have a large delay, we might
expect a better correspondence between sFC and eFC. Accordingly, we
might also expect that the group-averaged goodness-of-fit for the Schae-
fer atlas will decay faster than that for the Harvard-Oxford atlas when
the number of streamlines decreases as observed in Fig 4. This is be-
cause parameter points (subjects) migrate to the cluster with small de-
lay, and fewer optimal parameter points with large delay can be found
for a sparser WBT for the Schaefer atlas. These arguments can suggest a
possible mechanism associated with the impact of time delay in coupling
on the model fitting results.

The values of the optimal non-zero delays for the structure-functional
fitting modality can be influenced by the natural frequencies of oscilla-
tors (Eq 1) demonstrating relatively strong negative correlations with
the structure-functional model fitting as illustrated in supplementary
Figs. A7 and A8. Therefore, the average frequency of BOLD oscillation
for a given subject can influence the values of the optimal delay for the
best structure-functional correspondence. The parameter of the global
delay scales the average velocity of signal propagation between brain re-
gions. Consequently, the optimal speed of the signal propagation in the
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brain as revealed by the modeling results can be regulated by the mean
intrinsic time scale of oscillatory activity of individual brain regions.

4.4. Stratification analysis and optimal conditions

The problem of the optimal number of the total WBT streamlines was
also addressed in this study beyond the group-level analysis and aimed
at the best fitting of the personalized models for individual subjects. To
investigate the impact of the WBT density at the level of individual sub-
jects, we stratified the entire subject population into smaller subgroups
with more homogeneous (heterogeneous) model dynamics within (be-
tween) subgroups. One of the stratification approaches is to show the ef-
fect of the graph-theoretical network properties modulated by the WBT
density on performance of the model. We found that such correlations
for individual subjects are well-pronounced for the Schaefer atlas, but
they are somewhat less expressed for the Harvard-Oxford atlas (Fig 5 al
and b1l). Nevertheless, the stratification can be designed by combining
the splitting results for different network properties, which resulted in
a clear differentiation of the impact of the WBT streamline number on
the model validation across stratified subgroups and brain parcellations
(Fig 5).

Another approach to stratification of the subjects was based on the
clustering of the optimal delay for the structure-functional model fit-
ting discussed above. It can provide an informed view on the validation
results for the functional model fitting (Fig 6). One more stratification
approach is illustrated in Fig 7, where the subjects were split into two
subgroups of qualitatively different individual behavior of the goodness-
of-fit versus the streamline number. Based on the obtained results, we
can propose to use the large number (~2M-10M) of the WBT streamlines
for the best functional model validation, if the Schaefer atlas was used
for the brain parcellation.

On the other hand, the recommendation is completely opposite for
more than 20% of subjects for the brain parcellation based on the
Harvard-Oxford atlas (Fig 8b2, blue dashed curve 3). For such sub-
jects, the large number of streamlines can lead to a lower quality of
the model fitting as compared to rather sparse WBT containing, for ex-
ample, only 50K streamlines. Differentiating the subjects according to
the discussed stratification criteria can help to design an individual data
processing workflow and configurations of parameters for the optimal
personalized modeling of the brain dynamics. In particular, based on
the obtained results, we can suggest a personalized optimal number of
the WBT streamlines for the considered brain parcellation for the better
model performance at the modeling of the resting-state brain dynamics.

Based on the results of the stratification analysis, we may suggest a
few tentative guidelines to possible evaluation of personalized optimal
number of the WBT streamlines for the whole-brain model of the resting-
state brain dynamics.

e Around 50K WBT streamlines can be considered as a sparse WBT
condition.

e More than 2M WBT streamlines can be considered as a dense WBT
condition.

e Graph-theoretical network properties of the structural connectome

can influence the goodness-of-fit of the model over different tractog-

raphy densities. Such relationships to the data variables may con-

tribute to the mechanism of the fitting variability and subject strat-

ification into qualitatively different subgroups.

Modeling with time delay in coupling can enhance goodness-of-fit

of the model.

¢ A dense WBT is not always the best condition for the whole-brain

modeling.

Brain parcellation may affect the optimal parameters of the data pro-

cessing and should be taken into account already at early stages of

the data analytics.

To understand the underlying mechanism of the stratification results,
more detailed investigation aimed at quantitative validations and gen-
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eralization of the results should be performed. From the results of the
current study we can already conclude that optimal configurations of
the data processing and quantitative guidelines are important for per-
sonalized data processing and modeling.

4.5. Limitations and future direction

Although we used the data with high quality of the data pre-
processing and physiological noise reduction, however, we note that
the reported results were obtained from the neuroimaging data of young
adults with relatively narrow age ranges. In order to generalize our con-
clusions, they have to be verified for other datasets with broader dis-
tribution of the phenotypic parameters and other data quality such as
clinical-grade scans.

The current study used empirical FC based on the resting-state
fMRI measurements for evaluation of the model performance. Regard-
ing other data modalities, future works can include electrophysiological
data with electrical modeling for general outcomes. Furthermore, other
fitting modalities can also be possible metrics to evaluate whole-brain
modeling, for instance, dynamic FC or effective connectivity. Detailed
investigation under such conditions can contribute to a better coverage
and optimization of the model validation for personalized modeling.

5. Summary and conclusion

We found that varying number of total streamlines for WBT affects
the network properties of the structural connectome and performance
of the mathematical modeling of the resting-state brain dynamics. The
results showed that a dense WBT is not always the best condition for
the whole-brain mathematical modeling represented by a system of in-
teracting oscillators with time delay in coupling. We also demonstrated
that the optimal parameters of the data processing may be affected by
the utilized brain parcellation that should be taken into account already
at early steps of the data processing workflow. The present study did
not aim to provide any quantitative conclusion concerning the optimal
number of WBT streamlines, but rather to illustrate possible qualitative
effects caused by the varying WBT density on the structural connectome
and modeling results in combination with functional and anatomical
brain parcellations. Our results can contribute to a better understand-
ing of the interplay between the data processing and model parameters
and their influence on data analytics of dwMRI and modeling of the
resting-state fMRI data.
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A. Supplementary materials

Fig. Al Average binarized node degrees over the WBT conditions for (a) the Schaefer atlas and (b) the Harvard-

Oxford atlas.
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Fig. A2 Relationships between the network properties and the results of the maximal functional model fitting (sFC
vs. eFC) for individual subjects and 5 sessions for (a) the Schaefer atlas and (b) the Harvard-Oxford atlas. Correlation
coefficients of merged z-scored all sessions between the network properties and the maximal functional model fitting for
(c) the Schaefer atlas and (d) the Harvard-Oxford atlas. The asterisks below the x-axes indicate statistically significant
differences in the goodness-of-fit values between the two subgroups of subjects with positive and negative correlations
(p < 0.05 of two-sample one-tail t-test). (a2, b2) The gray dots represent the values for individual subjects, and the box
plots illustrate the medians (red lines), the interquartile ranges (blue boxes) and the outliers (red pluses). Abbreviations
of the network property names: binarized node degree (BD), weighted node degree (WD), clustering coefficient (CC),
betweenness centrality (BC), local efficiency (LE), global efficiency (GE), and modularity Q (MQ).
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Fig. A3 Pearson correlation coefficients between network properties and the goodness-of-fit of the model (similarity
between sFC and eFC) for the Schaefer atlas.
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Fig. A4 Pearson correlation coefficients between network properties and the goodness-of-fit of the model (similarity
between sFC and eFC) for the Harvard-Oxford atlas.
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Fig. A5 Stratification of subjects based on the distributions of the correlation coefficients between the network prop-
erties and the functional goodness-of-fit values of the model for (a) the Schaefer atlas and (b) the Harvard-Oxford
atlas. (a, b) p-values of the two-sample one-tail t-test for the differences of the model fitting between the two subject
subgroups split based on the positive or negative correlation coefficients whose distributions are illustrated in Fig 5
al and bl. The corresponding network properties and the number of WBT streamlines are indicated on the horizontal
and vertical axes, respectively. The black squares in the tables indicate significant results with p < 0.05. Red cells
mean the subgroup of positive correlations showed higher goodness-of-fit of the model than the subgroup of negative
correlations. Blue cells mean the subgroup of negative correlations showed higher goodness-of-fit of the model than
the subgroup of positive correlations. Abbreviations of the network property names are as in Fig 5. The plus (+) or
minus (-) sign after the property name in the black boxes, e.g., S.D. WD+, indicates a group of subjects with positive,
respectively, negative correlation coefficients between the corresponding network property and the model goodness-
of-fit values. The results of 10K condition were excluded from this analysis because the network properties from 10K
show remarkably different tendencies.
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Fig. A6 (al and bl) Agreements between eFC and eSC for two subgroups by the second criterion of the stratification.
(a2 and b2) Agreements between sFC and eSC for two subgroups by the second criterion of the stratification. The
subgroup 1 means the cluster 1 and the subgroup 2 means the cluster 2 in Fig 6.
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Fig. A7 Relations between the mean estimated natural frequencies and the optimal global delays for the similarities
of sFC versus eSC for the Schaefer atlas. Red dots are the optimal parameter sets of subgroup 1 and blue dots are that
of subgroup 2 in Fig 6. The subgroup 1 means the cluster 1 and the subgroup 2 means the cluster 2 in Fig 6.
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Fig. A8 Relations between the mean estimated natural frequencies and the optimal global delays for the similarities
of sFC versus eSC for the Harvard-Oxford atlas. Red dots are the optimal parameter sets of subgroup 1 and blue dots
are that of subgroup 2 in Fig 6. The subgroup 1 means the cluster 1 and the subgroup 2 means the cluster 2 in Fig 6.
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Fig. A9 Comparison between maximal functional fitting with and without delay (i.e., zero delay) of the current
modeling. (a, b) Comparison of the functional model fitting for the Schaefer and Harvard-Oxford atlases. With delay,
it increased by 9.0% for the Schaefer atlas and 8.2% for the Harvard-Oxford atlas. (¢, d) Comparison of the structure-
functional model fitting for the Schaefer and Harvard-Oxford atlases. With delay, it increased by 13.7% for the Schaefer
atlas and 14.6% for the Harvard-Oxford atlas.
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Fig. AI0O Parameter planes for the two model fitting modalities between simulated and empirical data.
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Modern approaches to investigate complex brain dynamics suggest to represent the brain as a functional network
of brain regions defined by a brain atlas, while edges represent the structural or functional connectivity among
them. This approach is also utilized for mathematical modeling of the resting-state brain dynamics, where the
applied brain parcellation plays an essential role in deriving the model network and governing the modeling
results. There is however no consensus and empirical evidence on how a given brain atlas affects the model
outcome, and the choice of parcellation is still rather arbitrary. Accordingly, we explore the impact of brain
parcellation on inter-subject and inter-parcellation variability of model fitting to empirical data. Our objective
is to provide a comprehensive empirical evidence of potential influences of parcellation choice on resting-state
whole-brain dynamical modeling. We show that brain atlases strongly influence the quality of model validation
and propose several variables calculated from empirical data to account for the observed variability. A few classes
of such data variables can be distinguished depending on their inter-subject and inter-parcellation explanatory

power.

1. Introduction

Investigation of brain dynamics during task-evoked and resting-state
activity is frequently based on the inspection of corresponding func-
tional networks that are collections of brain regions with enhanced syn-
chronization among them (Bolt et al., 2017; Cole et al., 2014; Park and
Friston, 2013). Neither nodes nor edges of such networks can uniquely
be defined, especially, for the resting-state brain activity. State-of-the-
art approaches range from voxel-wise nodes resulting in huge networks
defined by the number of voxels in the underlying neuroimaging data
to nodes encircling entire brain regions either as neuronal foci co-
activated during a specific task or parcellated according to other cri-
teria (Stanley et al., 2013). In the latter case, the brain regions are
defined based on a certain brain parcellation (Eickhoff et al., 2018b;
Stanley et al., 2013; Thirion et al., 2014), which reduces the dimension-
ality of the brain data by merging hundred thousands of voxels from

high-resolution neuroimaging data into a few hundreds up to thousand
of brain regions. A unified brain parcellation could improve the inter-
pretability and comparability of results for different subjects and studies
and increase the effective signal-to-noise ratio. However, there are many
ways to parcellate the brain into separate regions (or parcels), which is
actively debated in the literature (Eickhoff et al., 2018b; Stanley et al.,
2013; Thirion et al., 2014). There is a sparse empirical evidence for the
effect of a particular atlas choice, but see Refs. (Messe, 2019; Pervaiz
et al., 2020; Zimmermann et al., 2019) for recent reports.

The great variety of possible techniques for creating brain parcella-
tions and existing brain atlases makes the choice of a particular parcel-
lation for a given analysis very difficult (Eickhoff et al., 2018a). At least
two paradigmatically distinct approaches can be used for the parcella-
tion, where the brain regions are defined based either on their anatom-
ical or functional properties. For example, the cortex can be parcellated
into regions according to its folding properties, e.g., into gyral-based
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parcels encircled by tracing from the depth of one sulcus to another
(Desikan et al., 2006). A very different parcellation approach is based
on the brain function, where the patterns of the resting-state functional
connectivity (FC) can be used to group the voxels (or vertices) into
parcels of similar connectivity (Schaefer et al., 2018; Shen et al., 2013).
The latter can be evaluated either according to a global similarity mea-
sure combined with abrupt changes in the local gradient of the whole-
brain intrinsic FC (Schaefer et al., 2018) or based on the graph theory
with application of a multigraph clustering approach to the resting-state
FC (Shen et al., 2013). From the above anatomical and functional ap-
proaches to brain parcellation, one may assume that the latter could
be more appropriate for calculation of the whole-brain FC, where the
parcels are suspected to be composed of voxels with higher functional
homogeneity. However, the detailed effects of these two distinct par-
cellation techniques on the results of data analysis and modeling can
hardly be predicted by a simple theoretical reasoning.

Utilizing a brain parcellation is essential for dynamical modeling of
brain activity, where the brain regions are represented as nodes of a
network model (Honey et al., 2009). The selected brain parcellation is
involved in the extraction of the structural connectivity (SC), inferred
from diffusion-weighted magnetic resonance imaging (dwMRI), which
serves as proxies for anatomical connections between brain regions at
the meso- and macroscopic level (Hagmann et al., 2010). This SC can
then be used to estimate the coupling strength and communication de-
lay between the nodes of the model network contributing in such a way
to the model derivation (Deco et al., 2011; Ghosh et al., 2008). Further-
more, the selected parcellation can be used to extract the blood oxygen
level-dependent (BOLD) signals inferred from functional magnetic reso-
nance imaging (fMRI) and calculate the empirical FC. The latter can be
compared to simulated FC calculated from simulated BOLD time series
generated by the derived model, thus validating the simulation results
against the empirical data (Cabral et al., 2011; Deco and Jirsa, 2012).
As a consequence, this process crucially depends on the empirical data
used for the model derivation (e.g., SC) and fitting (e.g., FC), which in
turn is affected by the data processing, in particular, by the selected
brain parcellation (Messe, 2019; Pervaiz et al., 2020; Popovych et al.,
2019; Zimmermann et al., 2019).

In this study we therefore simulate the resting-state brain activity
using dynamical mathematical models to investigate the effects of brain
parcellations. Functional and anatomical brain atlases with different res-
olutions are used for model validation against empirical resting-state
functional and structural connectivity data. We consider three represen-
tatives from the above parcellation classes as given by the anatomical
Harvard-Oxford atlas (Desikan et al., 2006) and the functional Schae-
fer (Schaefer et al., 2018) and Shen (Shen et al., 2013) atlases. The ef-
fects of brain parcellation are studied in detail with two systems of cou-
pled phase and limit-cycle oscillators suggested for modeling cortical
oscillations and resting-state BOLD dynamics (Breakspear et al., 2010;
Cabral et al., 2011; Deco et al., 2019; 2017; Fukushima and Sporns,
2018; Ponce-Alvarez et al., 2015). The effects are investigated by an ex-
tensive exploration of the model parameter space. The models are fitted
against empirical data of individual subjects for a set of varying condi-
tions, in particular, the granularity of the parcellation for Schaefer and
Shen atlases and the maximal probability threshold for Harvard-Oxford
atlas affecting the size of brain regions.

The number of parcels is an important parameter, which may influ-
ence the results of the mathematical modeling, the empirical structure-
function relationship as well as the prediction of human behavior from
the patterns of brain connectivity (Honey et al., 2009; Messe, 2019; Per-
vaiz et al., 2020; Proix et al., 2016; Zimmermann et al., 2019) and de-
serves a systematic modeling investigation (Popovych et al., 2019). In
the paper (Proix et al., 2016) the authors explored the impact of parcella-
tions and local connectivity on the dynamics of neural mass models with
and without delays, where the different parcellations were obtained by
randomly splitting the brain regions of the Desikan-Killiany atlas into
smaller subregions. It was in particular identified that spatial attractors
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of slow brain dynamics were qualitatively not affected by the number of
regions in the cortical parcellation, whereas the parcellation granular-
ity influenced their critical range in the global coupling strength. On the
other hand, the richness of fast dynamics of the response to perturba-
tions increased only if delays were considered in the model, suggesting
an optimal parcellation scale, which can be decomposed into only a few
spatial patterns. The work of Zimmermann et al. (2019) exposed a sub-
ject specificity to the association between empirical structural and func-
tional connectomes for six different datasets and brain parcellations. It
was however shown that intra-subject specificity of the SC-FC fit was
achieved only for one of the considered cases indicating that select-
ing an appropriate brain parcellation was critical to provide enough
statistical information to individually link SC and FC. The structure-
function relationships between empirical SC and FC were also investi-
gated for several brain parcellations with various spatial resolutions by
Messe (2019) revealing a significant effect of brain parcellation on the
SC-FC correlation driven by the number of brain regions. In the paper
(Pervaiz et al., 2020) the impact of brain parcellation on the predic-
tive power of data-driven models was analyzed regarding the relation-
ship between whole brain functional connectivity patterns and behav-
ioral traits in an attempt to find the optimal parcellation among other
conditions.

In this study we analyze the parcellation-induced differences of
model validation against empirical data for two approaches to brain
parcellation based on anatomical or functional brain data. Furthermore,
we test for an effect on two different models of limit-cycle and phase os-
cillators distinguished whether the amplitude of the simulated BOLD
signals is taken into account or not, respectively. We consider func-
tional and structure-functional fitting modalities for the model vali-
dation against empirical data. We aim to evaluate whether and how
different parcellations may influence the modeling results and suggest
possible approaches to explain inter-subject and inter-parcellation vari-
ation of model fitting. In our approach, we study the contribution of
different features of the experimental data, which can vary with the
pre-processing and chosen parcellation, to the ability of mathematical
models to make an individualized link between simulated and empir-
ical connectomes. We demonstrate that the considered atlases lead to
substantially different results when comparing the model fit for parcel-
lations within and between the anatomical and functional parcellation
families. This is especially the case for the quality of the model vali-
dation, structure of the model parameter space and reliability of the
fitting results. To understand the origin of the observed behavior of the
model fitting, we also evaluate how the properties of the empirical data
used for model derivation and validation may influence the modeling
results (Messe et al., 2014). We show that several data variables calcu-
lated from the empirical neuroimaging data can be classified into a few
correlative types depending on their contribution to the model fitting
for individual subjects and for the brain parcellations from the same
or different brain atlases. In this respect, the variation of the fitting re-
sults for personalized models across subjects and parcellations can, to a
greater extent, be accounted for by the variation of the considered data
variables.

2. Methods and materials
2.1. Empirical data

Empirical SC and FC used for the derivation and validation of the
mathematical models were extracted for 272 healthy unrelated subjects
(144 females, average age 28.5 + 3.5 [mean+std] years) from the Hu-
man Connectome Project (HCP; https://www.humanconnectome.org/)
(Van Essen et al., 2013) S1200 public release with complete dwMRI and
resting-state fMRI data.

Structural connectivity Empirical SC approximating the anatomical ax-
onal tracts in the brain (Conturo et al., 1999) was extracted from pre-
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processed dwMRI data. To do this, we developed an in-house pipeline
consisting of FSL version 5.0 (Jenkinson et al., 2012), Freesurfer 6.0
(Fischl et al., 2001), ANTs 3.0 (Tustison et al., 2014), and MRtrix3
3.0 (Tournier et al., 2019). The main pre-processing steps included de-
noising, bias-field correction, removal of eddy-current-induced distor-
tions and motion correction (dAwMRI), normalization of image inten-
sity (T1-weighted image), co-registering the diffusion data with the T1-
weighted image, estimation of the transformation function from the
MNI standard template to the native diffusion space, and segmentation
and application of tissue masks in the diffusion space. Then the whole-
brain tractography (WBT) was calculated by the probabilistic fiber track-
ing algorithm (iFOD2) based on the multi-shell-multi-tissue constrained
spherical deconvolution algorithm (Jeurissen et al., 2014), which was
realized in MRtrix3, where 10 million streamlines were obtained. The
tracking algorithm used voxels in the white-mater mask for seeding of
tracts with the maximal angle in 45 degrees between successive steps.
Finally, the resulting SC was extracted from the calculated WBT accord-
ing to a given brain parcellation defining a set of brain regions (parcels),
where any two parcels were selected as seed and target regions for the
compression of WBT to the parcellation-based SC. The output is two
N x N matrices of SC containing the empirical streamline counts (eSC)
and the averaged empirical streamline path lengths (ePL) between any
pair from N brain regions of the considered brain parcellation.

Resting-state functional connectivity The empirical FC was calculated
from the resting-state fMRI data which was ICA FIX denoised as pro-
vided by the HCP repository (Glasser et al., 2013; Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014). Similar to the extraction of the empirical
SC, also for the calculation of the empirical FC, the brain was split into
a set of regions according to a given brain parcellation, and the mean
BOLD signals (averaged over all voxels in any region) were calculated
for all parcels. The extracted BOLD signals were then cross-correlated by
Pearson correlation resulting in N X N empirical FC (eFC) matrices for
each subject. The HCP repository provided 4 resting-state fMRI sessions
(1200 volumes, TR = 720 ms) for each considered subject correspond-
ing to the scans with two different phase-encoding directions repeated
on two different days. This accordingly resulted in 4 eFC matrices for
each subject. Additionally, the BOLD signals from all 4 scanning sessions
were concatenated, and 5 eFC matrices were obtained in total for each
subject.

Brain parcellation The empirical SC and FC were calculated for 11
brain parcellations using the Schaefer and Shen atlases based on the
resting-state functional connectivity (Schaefer et al., 2018; Shen et al.,
2013), and the Harvard-Oxford atlas based on the anatomy of corti-
cal folding (Desikan et al., 2006). Several variations of these atlases
were considered: the Schaefer atlas with 100, 200, 400 and 600 cortical
parcels (denoted as S100, S200, S400 and S600, respectively), the Shen
atlas with 79, 156 and 232 cortical regions (denoted as Shen79, Shen156
and Shen232), and the probabilistic Harvard-Oxford atlas with 96 non-
overlapping cortical parcels with thresholds at 0%, 25%, 35%, and 45%
of the maximal probability (denoted as HO96 0%, HO96 25%, HO96
35%, and HO96 45%, respectively). For higher thresholding, voxels that
did not reach the threshold level were excluded, and for 45% threshold
the left supracalcarine cortex region contained no supra threshold voxels
reducing the number of parcels to 95 for HO96 45%.

Finer granularity for the Schaefer and Shen atlases and larger thresh-
old for the Harvard-Oxford atlas led to smaller brain regions of the cor-
responding parcellations as illustrated in Fig. 1A. The main difference
between the considered atlases is that the brain regions are more homo-
geneous in size for the Schaefer and Shen atlases than for the Harvard-
Oxford atlas. However, the size spread decayed together with the aver-
age size such that the relations between them little changed for vary-
ing granularity and probability threshold, albeit overall differences be-
tween the three parcellation families [Fig. 1B]. The variation of the at-
lases, their parcellation granularity and probability threshold affected
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Fig. 1. Variation of the region size for the considered brain parcellations. (A)
Distributions of the region size (the number of 1 mm isocubic voxels) and (B)
the corresponding relations between the mean or median and the spread of the
region size are depicted versus all considered parcellations. The spread of the
region size is reflected by the standard deviation (STD) or interquartile range
(IQR) as indicated in the legends.

the properties of the empirical data used for the model derivation and
validation as discussed in Section 3.3 below.

2.2. Models and simulated data

In this study we considered two models. The first model is an ensem-
ble of coupled phase oscillators of Kuramoto type (Kuramoto, 1984)

N
. C .
;0 =2 f; + ; wj, sin(@,(t = 7;,) = @; (1) + ;. ¢))

j=12...,N,

where ¢; are the phases, N is the number of oscillators, f; are the nat-
ural frequencies (frequencies of the uncoupled oscillators, measured in
hertz (Hz), and the time ¢ in the model and delay in coupling are thus
measured in seconds), and C is the parameter of the global coupling. Pa-
rameters w;, and z;, represent the individual coupling weight and prop-
agation delay in the coupling, respectively, from oscillator » to oscillator
Jj, and n; is an independent noise uniformly distributed in the interval
[-0.3,0.3]. This system was used to model by the observable x ;= sin(g;)
the dynamics of the empirical BOLD signal of the jth brain region (par-
cel) according to a given brain parcellation as explained above, where
the number of oscillators N in model (1) was equal to the number of
brain parcels.

Another investigated model is a system of coupled generic limit-cycle
(LC) oscillators that are the normal form of the supercritical Hopf bifur-
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Fig. 2. Examples of model (1) validation against empirical data. Fitting of the simulated FC (sFC) to eFC (upper row, A-C) and to eSC (lower row, D-F) for S100
parcellation. (A, D) Similarity (Pearson correlation coefficient) between the simulated and empirical data is encoded in color versus parameters of the global delay
7 and coupling C, where the optimal parameter points of the best fit are indicated by white circles, and the next 4 largest values are depicted by blue diamonds.
The corresponding sFC matrices of the best fit compared with eFC and eSC, respectively, are depicted in the middle column (B and E), whereas the corresponding
eFC matrix and normalized by its mean eSC matrix are shown in the right column of the upper (C) and lower (F) row, respectively. The simulated and empirical FC
matrices are shown in the same scale for comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

cation (Kuznetsov, 1998)

z;(n) = (a»+i2n’fj—

£ 3

lz;(01%)z; ()

t—r n) —Z;(0) + &,
ji=1,2,....N, )

where z;(f) = x;() + iy;(t) are the complex variables of individual oscil-

lators, and i = \/—_1 is the imaginary unit. Without coupling (C = 0), all
oscillators of ensemble (2) independently and uniformly rotate around
the origin on the limit cycles with individual radii NG and with indi-
vidual natural frequencies f; measured in Hz. The independent complex
noise ¢; is uniformly distributed in the interval [-0.3,0.3]. The empirical
BOLD signal of region j was modeled by the variable x;(?).

The model parameters f;, a;, w;, and 7;, are extracted from the em-
pirical data for each individual subject, and the personalized models
(1) and (2) were simulated separately for each subject. The natural fre-
quencies f; of the phase and LC oscillators were calculated from the
empirical BOLD signals extracted from the corresponding brain regions
as the frequencies of the maximal spectral peaks discarding the frequen-
cies below 0.01 Hz and above 0.1 Hz. Similar approach for defining the
local model parameters was also used in other studies for the phase and
LC oscillators (Deco et al., 2019; 2017; Ponce-Alvarez et al., 2015). The
amplitude parameters a; of LC oscillators (2) were selected proportion-
ally to the extent of time fluctuations of empirical BOLD signals of indi-
vidual parcels. For this, the normalized standard deviation std(BOLD )
was used to calculate a; such that the mean and the standard deviation
over all parcels were (a;) = 0.5 and std(a;) = 0.4, respectively.

The coupling weights w);, and delays 7;, were derived from the eSC
and ePL, respectively. The parameters w;, were calculated as the nor-
malized number of SC streamlines w;, = k,,/(k;,), where k;, is the
number of streamlines connecting regions j and n, and (-) denotes the en-
semble averaging over the entire N X N matrix with zero diagonal. The
matrix of the streamline counts eSC = {k j,,} thus defined the coupling

weights and the graph of the model network. The delays z;, were calcu-
lated as z;, = L;,/V, where L, is the average path length of the stream-
lines connecting regions j and n, and V is an average velocity of signal
propagation. The matrix ePL = {L,, } can thus be used to calculate the
delays 7;, in the coupling, which can be rewrittenas z;, =7 - L;,,/ (L n )
where 7 = (L jn> /V is the global (or average) delay. In models (1) and
(2) the self-connections were excluded (w = 0) by putting the diagonal
elements in the matrices eSC and ePL to zero: k;; = L;; = 0. The param-
eters of the global coupling C and the global delay = can be used to
scale the extent of the coupling in the system and the average velocity
V, respectively, and were varied to fit the model to empirical data.

2.2.1. Model validation

For each set of the model parameters, the models (1) and (2) were
numerically simulated, and the matrix of the simulated functional con-
nectivity (sFC) was calculated by Pearson correlation between the sim-
ulated BOLD signals x;, j = 1,2,..., N. sFC was compared with the ma-
trices of the emplrlcal connecthlty eFC and eSC, where the similarity
between them was calculated by Pearson correlation, i.e., corr(sFC, eFC)
or corr(sFC, eSC) between the corresponding upper triangular parts. The
model fitting for the phase oscillators (1) is illustrated in Fig. 2. For
given eFC and eSC [Fig. 2C and F], the model parameters r and C were
varied, and the similarity between sFC and the empirical connectivity
matrices was calculated for each parameter point (z, C) [Fig. 2A and D].
Among all tested parameter values, the optimal values were selected cor-
responding to the best model fit, i.e., where the similarity is maximal
[Fig. 2A and D, while circles]:

Fit(sFC, eFC) =
Fit(sFC,eSC) =

max corr(sFC, eFC),

0 3)
max) corr(sFC, eSC).
The goodness-of-fit values Fit(sFC, eFC) of the functional model fitting
can be used to evaluate the similarity between the simulated patterns
of synchronization between oscillators of systems (1) and (2) and the
resting-state BOLD dynamics as given by eFC matrix. On the other
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hand, the structure-functional model fitting Fit(sFC, eSC) evaluates how
strongly the model dynamics can replicate the underlying network struc-
ture as for the structure-function relationship in the brain (Honey et al.,
2009; Messe, 2019; Park and Friston, 2013; Zimmermann et al., 2019)
and for which parameters and dynamical regimes. Examples of the cor-
respondence between sFC and empirical data are illustrated in Fig. 2,
compare sFC matrices in Fig. 2B and E with eFC and eSC in Fig. 2C and
F, respectively. For further analysis, optimal model parameters were se-
lected from each parameter space as in Fig. 2A and D (white circles)
together with the corresponding maximal similarity values Fit(., -), i.e.,
goodness-of-fit of the model defined by Eq. (3).

As mentioned above, the two models were simulated for 11 brain
parcellations (4 for the Schaefer atlas, 4 for the Harvard-Oxford atlas
and 3 for the Shen atlas) defining 11 simulation conditions for each sub-
ject. Simulation for each condition resulted in 5 parameter planes like in
Fig. 2A and D of comparison between sFC and eFC (each subject had 5
eFCs), and one plane of comparison between sFC and eSC. Each param-
eter plane spanned the range [0, 94] x [0, 0.945] of the coupling delay =
and strength C, respectively, and contained a grid of 48 x 64 parameter
points. For each of these parameter points the models were numerically
simulated (model run) for random initial conditions by the stochastic
Heun integration method with fixed As = 0.06 s integration step during
4000 s, where the last 3500 s were used for sFC evaluation (the first 500
s were skipped as transient). From each parameter plane one optimal
parameter point (z, C) was extracted and collected for further analysis
[Fig. 2A and D, white circles], where the maximal similarities (3) were
reached. For the considered 272 subjects we analyzed 272 x 5 = 1360
maximal similarities Fit;(sSFC,eFC) (i = 1,2, ...,1360) and 272 values of
Fit;(sFC,eSC) (i = 1,2,...,272) and the corresponding optimal parame-
ters (r;,C;) for each of 11 simulation conditions (brain parcellations)
and 2 models. These values were derived from more than 18 millions of
model runs.

For statistical analyses, we related the vectors Fit;(-,-) (we omit the
subscripts in what follows) across subjects between different brain par-
cellations and models to evaluate the similarity and interdependencies
between modeling results with regard to simulation conditions (parcel-
lations and models) as well as statistical properties of the empirical data.
The similarity was evaluated by the Pearson correlation coefficients and
their statistical significance as provided by the corrcoeff function in Oc-
tave. Fischers z-transform was applied to the correlation coefficients be-
fore (and after) performing arithmetic operations (e.g., averaging) and
testing. For multivariate analysis the standard multiple linear regression
model (MLR) was employed.

3. Results

In what follows we first illustrate the results of the model fitting
for all considered subjects, parcellations, fitting modalities and models.
Then we present two approaches to evaluate and explain the impact of
brain parcellations on the inter-subject and inter-parcellation variability
of the obtained modeling results. As our first approach, the results of the
model fitting, i.e., the Fit-values of the maximal similarity (3) and the
corresponding optimal model parameters (z, C) were compared across
individual subjects and between different brain parcellations and mod-
els. We evaluated the inter-parcellation variability of the fitting patterns
across individual subjects. In the second approach, several data variables
were calculated from individual empirical data and used to account for
the variation of the goodness-of-fit across subjects for each of the consid-
ered brain parcellations as well as among them. Thereby, we assess the
influence of individual data properties on intra- and inter-parcellation
variability of the model fitting.

3.1. Results of model fitting

The distributions of the maximal similarity Fit(sFC, eFC) of the fitting
sFC to eFC are illustrated in Fig. 3A and E for the considered brain atlases
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and the two simulation models. The impact of the atlases is apparent
when comparing the differences between Fit(sFC, eFC) for the Schaefer
atlas (S100-S600, blue violins), the Harvard-Oxford atlas (HO96 0%-
45%, yellow - dark red violins) and the Shen atlas (Shen79-Shen232,
green violins). In the latter cases (HO96 and Shen) the both models
demonstrate much higher fitting to the empirical data with up to 80%
of the relative increase of Fit(sFC, eFC) with respect to S100-S600 cases
[supplementary Table A.1]. The differences in the model fitting can also
be observed between the parcellations of the same type, i.e., from the
same atlas. In particular, the best fit for the Schaefer atlas was obtained
for S200 case providing an optimal spatial scale for this brain atlas. For
other atlases Fit(sFC, eFC) monotonically decays when the threshold for
HO96 atlas or the number of parcels for the Shen atlas increases [Fig. 3A
and E].

Results of a systematic statistical testing of Fit(sFC, eFC) for all
considered simulation conditions (11 parcellations) are illustrated in
Fig. 3B and F, where the p-values of the paired Wilcoxon signed-rank
test are depicted in color for comparisons between different parcel-
lations. The dark color (darker than yellow) at the intersection of a
particular row and column of the shown matrices indicates that the
goodness-of-fit for the condition from the vertical axis Fit™") is statisti-
cally larger (with p < .05 at least) than Fit(°"™ for the condition from
the horizontal axis accordingly. For example, Fit$209 > Fit($100) a5 well
as Fit(5200) 5 Rjt(8400) and FitS200) > FjtS600) where the cells at the inter-
section of the row “S200” and columns “S100”, “S400” and “S600” are
dark and marked by “>” implying p < .05. We also confirm that the qual-
ity of the model fitting decays for larger probability threshold for HO96
atlas and for more parcels for the Shen atlas [Fig. 3B and F]. Shen79
provides the best fit for both models, whereas the lowest goodness-of-fit
was obtained for S100 for the phase model and for S400 and S600 for
the LC model, see the row “Shen79” and columns “S100”, “S400” and
“S600” in Fig. 3B and F. The effect size associated with the presented
p-values is illustrated in supplementary Fig. A.1.

The maximal similarity Fit(sFC, eFC) is achieved at the optimal
model parameters as illustrated in Fig. 2A (white circle). Distributions of
the optimal model parameters (z, C) for the model fitting to the empiri-
cal functional data eFC for all subjects are shown as one-dimensional his-
tograms in Fig. 3C and G, and as two-dimensional histograms in Fig. 3D
and H for a few selected parcellations. We found that Fit(sFC, eFC) is
attained at the optimal parameters remarkably concentrated towards
small delay r and moderate values of coupling C for all considered brain
parcellations and models. Somewhat broader distribution of the optimal
coupling can be observed for the Shen atlas for the phase model but not
for the LC model [Fig. 3C6 and G6]. Further examples of the param-
eter planes averaged over all subjects are illustrated in supplementary
Fig. A.2 together with the distributions of the optimal model parame-
ters taking into account up to 5 largest similarity values per individual
parameter plane [Fig. 2A and D, white circles and blue diamonds].

The situation is different for the structure-function relationship,
where sFC is fitted to eSC (count matrix) [Fig. 2D-F] as illustrated in
Fig. 4. In particular, the maximal similarity monotonically decays in
a well-pronounced manner when the granularity of the Schaefer and
Shen atlases decreases for both models [Fig. 4A and E, blue and green
violins, supplementary Table A.1 ]. In contrast, Fit(sFC, eSC) increases
for larger threshold for HO96 atlas and the LC model [Fig. 4E and F,
yellow-red violins]. On the other hand, the behavior of the Fit-values is
non-monotonic for the phase model, where the thresholds of 25% and
35% are optimal for the structure-functional model fitting for HO96 at-
las and phase model [Fig. 4A and B]. The highest and the lowest corre-
spondence between the simulated and empirical data was obtained for
Shen79 and S600, respectively, for both models, see also supplementary
Fig. A.1 for effect size.

The distributions of the optimal model parameters for Fit(sFC, eSC)
also exhibit a deviation from those for Fit(sFC, eFC) as illustrated in
Fig. 4 (compare to Fig. 3). Interestingly, the best structure-functional
model fitting can be achieved for small and very well localized values
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Fig. 3. Results of the functional model fitting for (A - D) phase model (1) and (E - H) LC model (2). (A, E) Distributions of the maximal similarity values Fit(sFC,
eFC) as violin plots for the considered brain parcellations denoted on the horizontal axes as introduced in Methods, where the medians and the interquartile ranges
are also shown. (B, F) Outcomes of statistical tests, where the p-values (corrected for multiple comparisons) of the paired Wilcoxon signed-rank test of the Fit(sFC,
eFC) values between the parcellations indicated on the axes are depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with p < .05
(indicated by arrow on the color bar) in favor of the alternative hypothesis Fit™") > Fit™ for parcellations in the row and column, respectively, where the
corresponding cell is dark (small p-value) and contains the inequality sign “>”. (C,D,G,H) Distributions of the corresponding optimal model parameters, where the
one- and two-dimensional histograms of the occurrence frequency of the optimal parameters are, respectively, plotted as step-wise curves (C, G) and depicted in
color (D, H) ranging from white (small values) to black (large values) for the parcellations indicated in the legends and plots. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

of the global coupling C and for broadly distributed delay = [Fig. 4C
and D] when compared to the functional fitting modality. The latter
property is somewhat reduced for the LC model as compared to the
phase model [Fig. 4G and H]. Nevertheless, positive delay in coupling
is still important to obtain the best model fitting in this case for both
models, see supplementary Fig. A.2 for more details and comparison

between the phase and LC models.

3.2. Inter-parcellation variability of fitting results

To explore the variability of the fitting results over brain parcella-
tion, in this section we analyze the similarity among the goodness-of-
fit vectors Fit(,-) (3) collected for all subjects and fMRI scan sessions
(see Methods) calculated for different parcellations and models. The Fit-
values were correlated across subjects for any two parcellations for the
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Fig. 4. Results of the structure-functional model fitting for (A - D) phase model (1) and (E - H) LC model (2). (A, E) Distributions of the maximal similarity values
Fit(sFC, eSC) for the considered brain parcellations, where the medians and the interquartile ranges are also shown. (B, F) Outcomes of statistical tests, where the
corrected for multiple comparisons p-values of the paired Wilcoxon signed-rank test of the Fit(sFC, eSC) values between the parcellations indicated on the axes are
depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with p < .05 (indicated by arrow on the color bar) in favor of the alternative
hypothesis Fit™" > Fit'™ for parcellations in the row and column, respectively, where the corresponding cell is dark (small p-value) containing the inequality
sign “>”. (C,D,G,H) Distributions of the corresponding optimal model parameters, where the one- and two-dimensional histograms of the occurrence frequency are,
respectively, plotted as step-wise curves (C, G) and depicted in color (D, H) ranging from white (small values) to black (large values) for the parcellations indicated
in the legends and plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

same as well as different models to evaluate how strongly the variation
of the brain parcellation and model can affect the inter-subject patterns
of the goodness-of-fit and assess the reliability of the fitting results.
The pairwise correlations of the maximal similarity Fit(sFC, eFC) be-
tween any two of the considered brain parcellations are shown for the
phase model in Fig. 5A and LC model in Fig. 5B. We observe that the
fitting results are well correlated for parcellations within the same at-
las/parcellation family, i.e., among S100-S600 parcellations and within

HO96 and Shen atlases. The average intra-atlas correlations are 0.82 for
the phase model [Fig. 5A] and 0.86 for the LC model [Fig. 5B]. On the
other hand, the similarity of the model fitting patterns between different
atlases is reduced, which holds for both models, and the corresponding
average inter-atlas correlations are 0.59 and 0.71, for the phase and LC
models, respectively. The inter-subject patterns of the goodness-of-fit
Fit(sFC, eFC) are preserved for both dynamical models as illustrated in
Fig. 5C, where the phase model was used for parcellations on the vertical
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Fig. 5. Correspondence between the patterns of the inter-individual variation of the fitting results (Fit-values (3)) for the considered parcellations and models. The
vectors of the Fit-values collected over all subjects and scans (see Methods for details) were Pearson correlated with each other for any two parcellations (indicated
on the axes) for (A - C) Fit(sFC, eFC) and (D - F) Fit(sFC, eSC), and for (A, D) phase model and (B, E) LC model. In plots (C and F) the correspondence between
the phase model (parcellations on the vertical axes) and LC model (parcellations on the horizontal axes) is illustrated. The results are depicted by color, and their
magnitudes are indicated in the plots. The crossed out cells indicate that the corresponding correlation does not reach the statistical significance with p < .05. The
heavy red lines delineate the parcellations from the same atlas (parcellation family). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

axis, and the LC model was simulated for parcellations on the horizontal
axis. As for the inter-parcellation correspondence of the fitting results
for the same model [Fig. 5A and B], similar amount of stronger intra-
and weaker inter-atlas correlation is observed for the between-model
comparison [Fig. 5C].

The same conclusion can be drawn for the structure-functional model
fitting Fit(sFC, eSC) as illustrated in Fig. 5D for the phase model and in
Fig. 5E for the LC model. Here, the parcellations from the same atlas also
agree much better with each other than for the parcellations from dif-
ferent atlases. The results also demonstrate that Fit-values obtained for
HO96 parcellations and the LC model [Fig. 5E] are relatively dissimilar
to the other two atlases of brain parcellations. Furthermore, the similar-
ity Fit(sFC, eSC) seems to be sensitive to the model used for simulation
as illustrated in Fig. 5F. The fitting results of the LC model for S100-
S600 parcellations weakly correlate with those obtained for all other
parcellations for the phase model. For other atlases, the fitting results
of LC model are either practically independent of those obtained for the
phase model (for the Shen atlas), or even weakly anti-correlate with the
other model (for HO96 atlas) even for the same brain parcellation/atlas
[Fig. 5F].

Changing the brain parcellation can also influence the values of the
optimal parameters, where the maximal similarity (3) is achieved. The
pairwise parameter differences are illustrated in supplementary Fig. A.3
for the considered parcellations and models. Similar to the correlation
between the Fit-values [Fig. 5], the parcellations from the same atlas are
expected to lead to smaller variations of the optimal parameters than
between those from different atlases. Interestingly, the variation of the
optimal parameters is larger for the functional model fitting modality,
especially, for the between-model comparison than for the structure-
function correspondence. In the latter case the parameter distance be-
tween models remarkably mimics the similarity patterns of the corre-
lation between fitting results, compare Fig. 5F and supplementary Fig.
A.3F.

3.3. Data variables

In the next Section 3.4 we evaluate how the maximal model-data
similarity (3) obtained for the optimal model parameters depends on
selected statistical properties of the empirical data used for the model
derivation and validation. To this end, we calculated several data vari-
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Fig. 6. Variation of the data variables extracted for the considered brain parcellations. In columns 1 and 2, the distributions of the data variables (indicated on the
vertical axes) for all subjects/fMRI sessions are depicted versus the parcellations (indicated on the horizontal axes). In column 3, the correspondence between the data
variables among all considered parcellations is illustrated. For any two parcellations (indicated on the axes), the Pearson cross-correlation between the corresponding
data variables was calculated across all subjects for (A3) aver[std(BOLD)], (B3) std[aver(eFC)], (C3) corr(eFC,eSC), and (D3) aver[std(eSC)] as indicated in the titles
of the plots. The results are depicted by color, and their magnitudes are also printed in the plots. The crossed out cells indicate that the corresponding correlation
does not reach the statistical significance with p < .05. The heavy red lines delineate the parcellations from the same atlas (parcellation family). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ables (or indices) for each subject and fMRI scan session. For the em-
pirical BOLD signals we calculated the standard deviation of their time
fluctuations std(BOLD) averaged over all parcels aver[std(BOLD)]. Since
the BOLD signals were extracted as mean signals averaged over all
voxels in the parcels, the latter data variable may reflect the extent
of synchronization of BOLD dynamics within the individual brain re-
gions. Indeed, the amplitude of the mean signal is expected to increase
with enhanced synchronization as the theory of synchronization implies
(Kuramoto, 1984). On the other hand, calculating the variability of time
fluctuations among parcels std[std(BOLD)] may give an insight into the
difference of individual parcels in this respect.

Smaller brain regions, e.g., for finer granularity (Schaefer, Shen) or
larger probability threshold (HO96) can be suspected to be more homo-
geneous with respect to the BOLD dynamics. We observed that mean
BOLD signals exhibit enhanced fluctuations for smaller parcels demon-
strating larger standard deviation std(BOLD) [Fig. 6A1], where the dis-
tributions of aver[std(BOLD)] exhibit the behavior inverse to that of the
parcels’ size versus the considered brain parcellations [Fig. 1A]. The
same holds for std[std(BOLD)] [Fig. 6A2, but see Shen232]. Our calcu-
lations thus indicate that the intra-region dynamical homogeneity (syn-
chronization) may increase together with the inter-region variability of
it. However, a systematic investigation of the collective dynamics of
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BOLD signals within parcels is necessary to assess the intra-region dy-
namical homogeneity (Schaefer et al., 2018). Interestingly, the distri-
butions of both mentioned data variables across individual subjects ex-
hibit very similar patterns for any of the considered atlases and strongly
correlate across subjects for any pair of parcellations, see Fig. 6 A3 for
aver[std(BOLD)], where the minimal correlation r ~ 0.96 is attained for
S$600.

Additional data variables can be calculated from eFC by evaluation
of its column-wise mean aver(eFC) and the standard deviation std(eFC),
where the former represents the average functional connectivity (syn-
chronization) of a region to the rest of the brain (i.e., other regions),
and the latter stands for the extent of variation of the individual con-
nections of a given brain region. Evaluating the mean and the standard
deviation once more across all brain regions we obtain four data vari-
ables: aver[aver(eFC)), std[aver(eFC)], aver[std(eFC)], and std[std(eFC)].
The distributions of the first two are illustrated in Fig. 6B1 and B2,
where the total average inter-region synchronization aver[aver(eFC)] in
the brain decays with decreasing region size, which is also in agree-
ment with the behavior observed for BOLD signals [Fig. 6A2]. The inter-
region variation of the regional synchronization to the rest of the brain
std[aver(eFC)] does not demonstrate very pronounced dynamics with
respect to the considered parcellations [Fig. 6B2]. However, the inter-
parcellation patterns of its distribution appears to be similar to those
observed for the functional similarity Fit(sFC, eFC) [Fig. 3A and E]. An
example of the cross-parcellation correlation for the later data variable
is illustrated in Fig. 6B3, where the level of correlation is still very high
with r > 0.91 except for S100 which distinguishes from the other parcel-
lations.

Further data variables can be the extent of correlation between the
empirical connectivity matrices eFC, eSC and ePL, which may influ-
ence the quality of the model fitting and are denoted as corr(eFC, eSC),
corr(eFC, ePL) and corr(eSC, ePL). Examples of the distributions of these
variables are shown in Fig. 6C1 and C2, where both illustrated variables
apparently demonstrate a monotonic behavior with respect to the par-
cel size, but in opposite directions, i.e., corr(eFC,eSC) decreases, and
corr(eFC, ePL) increases when the region size decays. The impact of the
state-of-the-art brain parcellations on the structure-function relationship
corr(eFC,eSC) was investigated by Messe (2019), and a similar global
decrease in correlation with decreasing the parcellation granularity and
regions size was reported. For these data variables the difference be-
tween the atlases becomes more pronounced, where the correspondence
(correlation) between the data indices for the parcellations of the same
atlas are stronger than for those from different atlases [Fig. 6C3] as was
shown for the results of the model validation and optimal parameters
[Fig. 5 and supplementary Fig. A.3].

This effect is further enhanced for the data variables derived from
SC matrices, for example, for aver[std(eSC)] [Fig. 6D3]. The data vari-
ables aver|[std(eSC)] and aver[std(ePL)] calculated from the eSC and ePL
matrices normalized by their mean as used in the models always attain
larger values for finer granularity/smaller brain regions [Fig. 6D1 and
D2]. This is similar to the variables corr(eFC,ePL) [Fig. 6C2] and those
derived from BOLD signals [Fig. 6A1 and A2]. This is however in con-
trast to the data variables calculated from eFC, where the behavior is
different [Fig. 6B1, B2 and C1]. The observed increase of the average
inter-region variability of SC matrices [Fig. 6D1 and D2] might be sus-
pected when the brain is parcellated into smaller regions that stronger
deviate from each other with respect to individual connectivity prop-
erties. However, a detailed investigation is necessary to clarify the un-
derlying mechanisms of the illustrated behavior of the considered data
variables [Fig. 6].

Further considered data variables in the form std[aver(-)] and
std[std(-)] were calculated from the eSC and ePL matrices. The natural
frequencies f; of the models (1) and (2) extracted from the frequency
spectra of the empirical BOLD signals (see Methods) were also taken
into account, and the mean aver(f;) and the standard deviation std(f;)
were involved in the analysis.
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3.4. Correlation between data variables and model fitting

The variation of the empirical data illustrated in Fig. 6 may influence
the observed variability of the modeling results [Figs. 3 and 4]. There-
fore, to inquire into where the variance of the fitting results across sub-
jects and parcellations may come from, we investigate how the discussed
data variables and the maximal similarity (3) correlate with each other.
Several such correlative relationships are illustrated in the scatter plots
in Fig. 7A-C, where, together with linear regressions for individual par-
cellations (color dots and dashed lines), the joint linear regression for
all data points in the plots (for all 11 parcellations) is also shown by
solid black lines. The observed distinct constellations between the in-
dividual (color dashed) and joint (black solid) regression lines can be
used to differentiate between a few classes of the data variables with
respect to their relationships to the overall model fitting. For example,
for the data variable aver[std(BOLD)] [Fig. 7A] we found that the joint
correlation indicated in the plot appears to be much smaller than the
correlative relationships obtained separately for each individual par-
cellation. Therefore, the variation of the mentioned data variable can
relatively well account for the variability of the model fitting across in-
dividual subjects for a given parcellation, i.e., for the intra-parcellation
inter-subject variance. However, its explanatory power for the variation
of Fit(sFC, eFC) across considered parcellations is limited. We may thus
refer to such data indices as intra-parcellation variables.

Another class of the data variables can be illustrated by the data in-
dex corr(eFC, eSC) [Fig. 7B]. Here, the joint correlation between the em-
pirical data and the model goodness-of-fit across subject data from dif-
ferent parcellations can be much higher than the correspondence across
subjects within individual parcellations. In the considered example, the
across-subject correlations between the empirical data and results of
the model fitting are mostly small and negative for individual parcel-
lations. Therefore this data variable can hardly explain the variance of
the model fitting across subjects for a given brain parcellation. Never-
theless, the joint correlation for the data merged over all parcellations is
much stronger contributing to our understanding of the variance of the
fitting results across different parcellations. We may thus refer to such
data indices as inter-parcellation variables.

For some other data variables, for example, for std[aver(eFC)] the
joint correlation is comparable to the relatively large correlations for
individual parcellations [Fig. 7C]. The explanatory power of such vari-
ables can thus be extended from single to many parcellations. This in-
dicates that such data variables can therefore well account for both the
variability of the model fitting across subjects within individual parcel-
lations and the differences of Fit-values across parcellations. We may
thus refer to such data indices as the variables of both intra- and inter-
parcellation types.

The correlations across subjects and scanning sessions between the
similarity Fit(sFC, eFC) and all mentioned data variables are shown in
Fig. 7D for all considered parcellations. One in particular observes that
there are several data variables that only weakly correlate with Fit(sFC,
eFC), which may indicate that the results of the model fitting may little
depend on them. Such conclusion could be made for the mean of the
natural frequencies aver(f;), average variability of eFC aver[std(eFC)]
(except for S100 and S200), and also for the data indices derived from
eSC and ePL. Notably, the extent of the empirical structure-function re-
lationship corr(eFC,eSC) also little correlates with the correspondence
between simulated and empirical functional data, see also Fig. 7B. Put
otherwise, increasing/decreasing the agreement between the empirical
structure (eSC) and function (eFC) seems not to essentially influence the
quality of the model fitting (the similarity between sFC and eFC) or may
even have a negative effect. This takes place in spite of that the network
model is constructed from eSC and its output is compared with eFC.

Other data variables consistently exhibit (anti-)correlation with
Fit(sFC, eFC) ranging from moderate to relatively strong for most of
the parcellations. This for instance applies to the spread of the natural
frequencies std(f;), amplitude aver[std(BOLD)] of the BOLD signals and
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Fig. 7. Relationship between the fitting results (3) of the phase model (1) and empirical data. (A-C) Scatter plots and the corresponding linear regression (straight
lines) are shown for a few selected data variables from Fig. 6 indicated on the vertical axes versus the maximal similarity Fit(sFC, eFC) (horizontal axes). Each dot
represents one subject/MRI session, and color corresponds to that used to differentiate between the parcellations in Fig. 6. The black solid lines depict the joint
linear regressions for all data in the plots, and the joint correlations r are also indicated. (D, E) Pearson correlation across individual subjects between the maximal
similarity Fit(sFC, eFC) and several data variables indicated on the horizontal axis. The correlation was calculated for (D) different individual parcellations indicated
on the vertical axis and (E) joint data merged over a few combinations of the considered parcellations as indicated on the vertical axis: all parcellations of the Schaefer
atlas, Harvard-Oxford atlas, Shen atlas and all 11 considered parcellations (last row). The correlation is depicted by color, and its magnitude is indicated in the plot.
The crossed out cells indicate that the corresponding correlation does not reach the statistical significance with p < .05.

some properties of eFC [Fig. 7D]. These data variables may be used to
provide an initial guess of the pattern of the functional model fitting for
new subjects that supposed to be included in the analysis. However, the
correlation between eFC and ePL matrices corr(eFC, ePL) seems to have
a different impact on the model validation for different atlases, where
Fit(sFC, eFC) is practically independent of this data index for the Schae-
fer atlas, which is distinct for other atlases [Fig. 7D]. Such effects may
also be useful for understanding the observed differences in the qual-
ity of the model fitting for individual subjects and may also be applied
for explaining the impact of the considered brain parcellations on the
model fitting [Fig. 3A].

The above classification of the data variables with respect to their
intra- or inter-parcellation correlative relationships with the modeling
results [Fig. 7A-C] can be evaluated by comparing the individual corre-
lations in Fig. 7D to the joint correlation calculated for the data merged
over the considered parcellations for simultaneous analysis. This is illus-
trated in Fig. 7E for the phase model and functional model fitting. More
systematic comparison of the individual and joint correlations between
the results of the model fitting (3) and the data variables is summarized
in Fig. 8 for both models (1) and (2) and both fitting modalities Fit(sFC,
eFC) and Fit(sFC, eSC). Much larger individual (joint) correlation than
the joint (individual) one is indicative for an intra- (inter-) parcellation
data variable.

The constellation obtained for the phase model [Fig. 8A] is well pre-
served also for the LC model [Fig. 8B, see also supplementary Fig. A.4 for
individual and joint correlations]. The correlation patterns are different
for the structure-functional fitting modality [Fig. 8C and D], where the
results obtained for the phase and LC models may deviate from each
other, see also supplementary Fig. A.5 for individual and joint corre-
lations for the structure-functional fitting modality Fit(sFC, eSC). Al-
though most of the considered data indices exhibiting large correlation
are of inter-parcellation type [Fig. 8], still there are a few data variables
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of intra-parcellation type like std(f;), aver[std(BOLD)] or std[std(eFC)]
for the functional similarity Fit(sFC, eFC) or std(f;) (phase model) and
aver(f;) (LC model) for Fit(sFC, eSC). The most pronounced data vari-
ables of both types for Fit(sFC, eFC) are given by the total average inter-
region synchronization aver[aver(eFC)] or inter-region variation of the
regional synchronization std[aver(eFC)] [Fig. 8A,B].

3.5. Multiple linear regression model

The variation of the model fitting across subjects and brain parcella-
tions can be investigated by combining several data variables in a MLR
model, where they serve as independent (explanatory) variables, and
the maximal similarity Fit(sFC, eFC) is the MLR output, i.e., the depen-
dent variable. The calculated data variables can be used in the MLR
model to evaluate which variation of the Fit-values across subjects and
parcellations can be explained by the individual empirical data used for
the model derivation and validation. The results of such a regression
with respect to all data variables [Fig. 7] are illustrated in Fig. 9 for in-
vestigated individual parcellations as well as for the joint data merged
over all parcellations. The fraction of the explained variance increases
when more data variables get involved in the regression, see Fig. 9A-
C and compare the indicated R?-values to the correlation coefficients
in Figs. 7 and 8. The results of the model fitting for the anatomical
Harvard-Oxford and the functional Shen atlases seem to be somewhat
better explained by the empirical data used for the model derivation
than for the functional Schaefer atlas [Fig. 9E, but see Shen232 for LC
model]. The strongest regression results are obtained for the joint re-
gression for the data merged over all considered parcellations [Fig. 9D
and E].

The weights of the discussed data variables within the maximal sim-
ilarity Fit(sFC, eFC) as reflected by the regression coefficients [Fig. 9
A2-D2] highlight several data variables that are of importance for under-
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Fig. 8. Correlation between the Fit-values (3) and data variables from Fig. 7 jointly for all considered brain parcellations. For the data variables indicated on the
horizontal axes, the joint correlation for the data merged over all considered parcellations [Fig. 7E, last row] is depicted by empty bars. The hatched bars represent
the correlation for individual parcellations from Fig. 7D averaged over all parcellations and significant values (i.e., excluding the crossed out cells in Fig. 7D) as
indicated in the legends. The data is shown for (A, B) functional fitting Fit(sFC, eFC) and (C, D) structure-functional fitting Fit(sFC, eSC), and for (A, C) phase model

(1) and (B, D) LC model (2) as indicated in the titles of the plots.

standing of the modeling results. All regression coefficients for the inter-
dependency between Fit(sFC, eFC) and the data variables are shown in
Fig. 10 for both models including the case of joint data (last rows in the
plots). Comparing the obtained results for individual parcellations and
models, we observe that the regression coefficients well agree between
the two models. There are several data indices that consistently and
strongly contribute to the Fit-values and seem to have a major impact on
the model fitting for many parcellations, see Figs. 9 and 10. In particular,
the variables std[aver(eFC)], aver[std(eFC)] and corr(eFC, eSC) have the
most notable regression coefficients. At the level of individual parcella-
tions, there is also a minor impact of other variables, for example, the
natural frequencies std(f;), average total connectivity aver[aver(eFC)]
and its variability std[std(eFC)] as well as structure-function relation-
ship with ePL matrix corr(eFC, ePL). For the inter-parcellation variance
of Fit(sFC, eFC), additional variables can be taken into account, that
are corr(eFC,ePL) and aver[std(eSC)] as suggested by the MLR model
[Fig. 10].

Similar results can also be obtained for the structure-functional
model fitting and the maximal similarity Fit(sFC, eSC) [supplementary
Fig. A.6]. Here we however find that Fit(sFC, eSC) less consistently de-
pends on the data variables over individual parcellations and with a
reduced agreement between different models as reflected by the MLR
coefficients. The only data indices that reliably contribute to the inter-
individual variation of the Fit-values for most of the parcellations are
those extracted from the natural frequencies aver(f;) and std(f;), while
the latter is again less reliable for the LC model [supplementary Fig.
A.6 A and B]. The fractions of the Fit(sFC, eSC) variance explained by
the data variables for individual parcellations is reduced as compared
to the functional model fitting [compare Fig. 9E and supplementary Fig.
A.6 D]. However, the inter-parcellation variance as reflected by the joint
data can still be relatively well accounted for by the empirical data [sup-
plementary Fig. A.6 C], and the largest MLR coefficients of the joint data
for both models are obtained for the structural connectome eSC and ePL
[supplementary Fig. A.6 A and B].
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3.6. Group-level inter-parcellation variations

In the previous sections the interdependence between the results of
the model validation and empirical data were evaluated by correlation
of the Fit-values with the data variables across individual subjects ei-
ther for any parcellation separately or for joint data merged over all
considered parcellations. While the former approach investigates the
inter-subject intra-parcellation variance, the latter also considers the
variation of the variables among parcellations. The inter-parcellation
variation of the fitting results can also be addressed at the group level
only, i.e, separated from the inter-subject variations. This can be accom-
plished when the data calculated for individual subjects is compressed
into single values, for example, to medians, see Figs. 3 and 4. The be-
havior of the group-averaged values across individual parcellations can
provide an informed expectation on how a given parcellation may in
average influence the considered variables, for example, the Fit-values
or the data indices.

In this section we correlate the medians of the Fit-values and the
considered data variables across parcellations. The results of the calcu-
lations are illustrated in Fig. 11. Several data variables exhibit strong
correspondence with the Fit-values for both models. However, only a
few of them are significantly correlated as indicated by hatched bars for
the phase model and empty bars with heavy borders for the LC model
[Fig. 11A and D]. For the functional modal fitting, only two data indices
std[aver(eFC)] and corr(eFC, eSC) significantly and strongly contribute
to the inter-parcellation variance of Fit(sFC, eFC) at the group level for
both models [Fig. 11A], see also Fig. 11B and C for the corresponding
scatter plots, where the fraction of the explained variance can reach 93%.

For the structure-functional model fitting, more data variables signif-
icantly correlate with the maximal similarity Fit(sFC, eSC) [Fig. 11D].
However, only four of them fulfill this requirement for both models si-
multaneously: corr(eFC,eSC) that also contributes to Fit(sFC, eFC), as
well as data variables aver[std(eSC)], std[aver(ePL)] and aver[std(ePL)]
calculated from the structural connectome as given by eSC and ePL ma-
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Fig. 9. Modeling the maximal similarity Fit(sFC, eFC) by the multiple linear regression (MLR) model with data variables from Fig. 7 as independent variables. (A1l
- D1) Scatter plots with regression lines of the Fit-values predicted by MLR versus Fit(sFC, eFC) obtained by simulations of the phase model (1). The diagonals are
depicted by thin black lines for comparison. (A2 - D2) The corresponding regression coefficients with the standard deviation for z-scored data obtained from the
model fitting for parcellations (A) S200 and (B) HO96 0%, (C) Shen79 and (D) for joint data merged over all considered parcellations as indicated in the corresponding
scatter plots. The gray bars indicate the regression coefficients, where the statistical significance with p < .05 was not achieved. The fractions of the explained variance
R? are also shown in the scatter plots and in plot (E) for all individual parcellations for both phase and LC models as indicated in the legend. The dashed lines depict

R? for the joint data also indicated in the legend.

trices. Again, the fraction of the explained variance can reach 93% for
the data index calculated from eSC, see Fig. 11D-F also for the corre-
sponding scatter plots. Interestingly, for the structure-functional fitting
modality also the data indices derived from eFC matrices seem to signif-
icantly contribute to the fitting values Fit(sFC, eSC) for the phase model
[Fig. 11D], although the corresponding p-values are close to the signif-
icance threshold of 0.05 after correction for multiple comparisons.

4. Discussion

We investigated the impact of data parameters used for the pre-
processing of the empirical neuroimaging data on the structure and dy-
namics of whole-brain dynamical models derived from and validated
against empirical data. In this study we focused on brain parcellations
and considered three brain atlases as defined by the functional Schaefer
atlas with 100, 200, 400 and 600 cortical regions (Schaefer et al., 2018),
functional Shen atlas with 79, 156 and 232 cortical regions (Shen et al.,
2013), and the anatomical Harvard-Oxford atlas of 96 cortical regions
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with a few thresholds of the maximal probability (Desikan et al., 2006)
that also influenced the region size. Here we did not aim to suggest
an optimal atlas, which is a complex task given the numerous existing
parcellation approaches, brain atlases and multiplicity of possible opti-
mization criteria. Instead, we illustrated possible effects that the consid-
ered brain parcellations can have on the modeling results. For this we
analyzed the results of the model validation for two fitting modalities
as given by the maximal similarities Fit(sFC, eFC) and Fit(sFC, eSC) and
for two models of coupled phase and limit-cycle oscillators. We also sug-
gested an approach to account for the parcellation-induced inter-subject
and inter-parcellation variability of the fitting results.

We compared the distributions of the Fit-values and the correspond-
ing optimal parameters for individual subjects and reported on pro-
nounced differences in the model fitting between the considered brain
parcellations. In particular, Fit(sFC, eFC) for the Schaefer atlas is much
smaller than that for the Harvard-Oxford and Shen atlases [Fig. 3]. The
latter atlases seem to provide appropriate parcellations for high corre-
spondence between simulated and empirical functional data. The better
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Fig. 10. Regression coefficients of the MLR model for Fit(sFC, eFC), for all considered parcellations including the joint data as indicated on the vertical axes and for
(A) phase model and (B) LC model. The values are depicted by color, and they magnitudes are shown in the plots. The crossed out cells indicate that the corresponding

coefficient does not reach the statistical significance with p < .05.

fitting for HO96 0% as compared to S100 was also observed for the
model of coupled phase oscillators simulating the high-frequency elec-
trical activity of brain regions in « and y frequency bands (Manos et al.,
2019). For the structure-functional model fitting Fit(sFC, eSC) the sit-
uation is different, and the difference between the atlases is less pro-
nounced [Fig. 4].

We demonstrated that the best correspondence Fit(sFC,eFC) between
simulated and empirical FCs was achieved at 200 parcels for the Schae-
fer atlas [Fig. 3] suggesting that an optimal spatial scale may exist, see
also (Arslan et al., 2018; Proix et al., 2016). However, the best func-
tional model fitting for the other brain atlases was achieved at the coars-
est granularity (Shen atlas) or smallest probability threshold (Harvard-
Oxford atlas), where the parcel size is maximal. On the other hand, the
maximal values of the structure-functional model fitting Fit(sFC, eSC)
were achieved at the largest region size for the Schaefer and Shen at-
lases [Fig. 4]. For the Harvard-Oxford atlas, Fit(sFC, eSC) exhibited ei-
ther non-monotonic behavior with the optimal probability thresholds at
25%-35% for the phase model or even monotonically increased for the
LC model when the region size decreased. We thus observed a remark-
able exchange of the distribution patterns of Fit(sFC, eFC) and Fit(sFC,
eSC) between the Schaefer and Harvard-Oxford atlases and different be-
havior of the Fit-values with respect to the parcel size. These findings
complicate the problem of the optimal spatial scale of brain parcellation.
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The corresponding distributions of the optimal model parameters
however manifest very similar shapes for the same fitting modality
also for different atlases and parcellations, but differ across fitting
modalities [Figs. 3 and 4]. In particular, the optimal parameters for
Fit(sFC, eFC) are strongly concentrated towards zero delay, whereas the
structure-function correspondence Fit(sFC, eSC) for many subjects was
also achieved for large delay, especially, for the phase model. This is
accompanied by a narrow interval of the coupling strength in the latter
case, whereas this parameter can broadly be distributed for the func-
tional fitting, especially, for the Shen atlas and phase model. Therefore,
the direct modeling of the resting-state BOLD dynamics by slowly os-
cillating phase or limit-cycle oscillators can safely be performed by sys-
tems without delay (Deco et al., 2019; 2017; Ponce-Alvarez et al., 2015),
however, only for the fitting of the simulated and empirical functional
data.

The impact of the brain parcellations on the model validation can
be investigated by evaluation of how the fitting results Fit(-,-) calcu-
lated for individual subjects and a given parcellation agree with those
found for other parcellations. We thus correlated Fit-values for different
parcellations across subjects and calculated the distance between the
corresponding optimal model parameters. It appeared that Fit-values
for the parcellations within the same atlas better correlate with each
other than across different atlases for both fitting modalities Fit(sFC,
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Fig. 11. Correlation between the results of the model fitting and data variables at the group level. (A, D) Pearson correlation across pacellations between the medians
evaluated over all subjects of the data variables and the corresponding medians of (A) Fit(sFC, eFC) and (D) Fit(sFC, eSC). The hatched bars for the phase model and
empty violet bars with heavy borders for the LC model stand for statistically significant (p < .05) correlation coefficients. (B,C,E,F) Scatter plots of the medians of
the data variables versus (B, C) Fit(sFC, eFC) and (E, F) Fit(sFC, eSC) with the corresponding regression lines. Each plot symbol corresponds to one of the considered
parcellations. The fractions of the explained variance (squared correlation) for both models are indicated in the legends.

eFC) and Fit(sFC, eSC) and both considered models [Fig. 5]. The same
is true for the distance between the optimal parameters, where they less
deviate from each other for the parcellations from the same atlas than
between atlases [supplementary Fig. A.3]. It is interesting to note that
neither different numbers of brain regions for the Schaefer and Shen
atlases nor different level of thresholding for the Harvard-Oxford atlas
can cause differences in the cross-subject correspondence in the model
fitting larger than those between different atlases even for parcellations
with similar region size. The inter-atlas differences cannot simply be re-
duced to differentiation between anatomical and functional parcellation
approaches considered in this study. This indicates that a parcellation
family (atlas) shares some particular properties that are reflected in the
results of the model fitting and preserved even for varying other “inter-
nal” parcellation parameters (e.g., granularity or probability threshold
affecting region size). This conclusion is also preserved for between-
model comparison for Fit(sFC, eFC), whereas the structure-functional
fitting results Fit(sFC, eSC) obtained for the LC model demonstrated en-
hanced sensitivity, especially, for the Harvard-Oxford atlas [Fig. 5].

To understand the origin of the observed variation of the fitting re-
sults across subjects and brain parcellations, we suggested to evaluate
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how the Fit-values depend on a few data variables (or data indices) re-
flecting some statistical properties of the empirical data used for the
model derivation and validation. The performed regressive analysis be-
tween Fit-values and data variables suggested that the latter can be split
into a few classes depending on their explanatory power for (i) inter-
subject Fit-variance for individual parcellations; (ii) inter-subject Fit-
variance across parcellations for joint data; and (iii) both inter-subject
Fit-variance within individual parcellations and across them [Figs. 7
and 8].

The bivariate analysis provided correlation between Fit-values and
individual data variables, where the squared correlation with Fit(sFC,
eFC) across subjects can reach R? = 64% for individual parcellations
and 35% for joint data merged over all considered parcellations [Fig. 7
and supplementary Fig. A.4]. For the structure-functional model fitting
Fit(sFC, eSC), this quantity may range up to 40% for the variance across
subjects for individual parcellations and about 62% for joint data [sup-
plementary Fig. A.5]. The inter-subject fluctuations of the Fit-values
may be better accounted for if several data variables are used in the
MLR model [Fig. 9]. With the multivariate approach, the inter-subject
variance of Fit(sFC, eFC) and Fit(sFC, eSC) can be explained up to 77%
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and 56% within individual parcellations and up to 76% and 77% for joint
data, respectively [Fig. 9 and supplementary Fig. A.6]. Finally, if the
variance of the fitting results across parcellations is considered at the
group level only (as medians), the individual data variables correlate
with the fitting values up to R* = 93% [Fig. 11].

Evaluating the effect that a given parcellation can have on the data
variables, which reliably, strongly and significantly correlate with the
fitting values as investigated in this study, can help to explain and pre-
dict the results of the model fitting before involving computationally
expensive model simulations. This can be addressed by investigating
the properties of the empirical data extracted for varying brain par-
cellation. Decrease of the region size due to finer granularity or larger
cutting threshold seems to cause two main effects, where both (i) the
intra-region dynamical homogeneity and (ii) inter-region heterogeneity
appeared to increase. This can be concluded from the behavior of the
mean BOLD signals of the brain regions and the extent of total synchro-
nization between regions aver[aver(eFC)] [Fig. 6]. The inter-region het-
erogeneity seems to increase for smaller regions also for the structural
connectome as demonstrated by the data variables derived from eSC,
ePL. Here, the empirical structure-function relationship corr(eFC, eSC)
decays with decreasing region size as was also reported by Messe (2019).
It is interesting to note that the correspondence between structure and
function is larger for the Harvard-Oxford atlas and the coarsest granu-
larity of the Shen atlas as compared to the Schaefer atlas. Investigation
of the impact of brain parcellations on the data variables should also
take into account inter-subject spatial variability (shape and location)
of brain regions, which seems to influence the cross-subject variability
of the resting-state fMRI data and functional connectivity (Bijsterbosch
et al., 2018; Kong et al., 2018).

Among the considered data variables only a few indeed exhibit
relatively strong interdependencies with the Fit-values across subjects
and parcellations [Figs. 7-11]. These sets of the data variables may
vary for different fitting modalities and models. Here, the behavior of
corr(eFC,eSC) is of special interest, because the empirical structure-
function correspondence might be suspected to underlie the model fit-
ting results Fit(sFC, eFC) and Fit(sFC, eSC). Our investigations how-
ever showed that corr(eFC,eSC) only weakly anti-correlate with Fit-
values across subjects for practically all of the considered parcella-
tions [Fig. 7 and supplementary Figs. A.4 and A.5]. On the other hand,
corr(eFC, eSC) relatively strongly correlates with the Fit-values for joint
data [Fig. 8] and can thus potentially be used to explain the varia-
tion of the fitting results between atlases, especially, if the prediction
is performed at the group-averaged level [Fig. 11]. In addition to the
variable of the structure-function relationship, the attention might also
be paid to other data indices including the average BOLD amplitude
aver[std(BOLD)], the total synchronization aver[aver(eFC)], variability
of the regional synchronization std[aver(eFC)] and the average variabil-
ity of inter-region structural connectivity aver[std(eSC)]. Further data in-
dices derived from the path length matrices ePL and natural frequencies
f; might also be of importance, especially, for the structure-functional
model fitting Fit(sFC, eSC).

Examining the similarities and differences in the interdependencies
between the Fit-values and data variables for individual parcellations,
joint and group-averaged data we may reveal the properties that are cru-
cial for understanding the impact of brain parcellations on the empirical
and simulated data. In this study we presented several interesting ob-
servations that require further detailed investigation and explanation,
which could contribute to the mechanisms influencing the modeling re-
sults. In the first turn, this concerns the counter-intuitive negative de-
pendencies (or their absence) between the empirical structure-function
relationship and fitting results at the subject level in contrast to the
group level as discussed above. Understanding the relationship between
the fitting results and other data variables, especially, for different fit-
ting modalities is also important. In this respect, we observed that the
parcellation-induced variability of the structure-functional model fitting
across subjects appears to be sensitive to the model and parcellation
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considered, whereas the functional fitting is relatively robust against
different parcellations and models [Fig. 5]. Another issue relates with
the mechanism of how the parcellation granularity and region size in-
fluence the correspondence between empirical and simulated functional
and structural connectomes, which was found to be a difficult problem
already for empirical data (Messe, 2019). We suggested to address these
questions by separating the inter-subject and inter-parcellation variabil-
ity of the modeling results and their investigation by inspecting the data
indices computed from the empirical data. This approach needs to be
confirmed and refined for more parcellations, models and datasets.

In this study we used the HCP dataset, where the data quality is close
to a perfect physiological noise reduction. Examining different process-
ing strategies and their parameters can be an object of investigation for
further studies. In addition, other measures of similarity between sim-
ulated and empirical data can be used to verify the obtained results,
for example, the amount of metastability or similarity between simu-
lated and empirical dynamic FC (Deco et al., 2017). The generalization
of the reported results should be based on profound hypothesis testing
involving sophisticated statistical methods for evaluation and compar-
ison of correlation (Wilcox and Rousselet, 2018). On the other hand,
instead of similarity measures based on correlative relationships one
may utilize linear models that could resolve some issues connected with
heteroscedasticity of the data (Thirion et al., 2015). Some other data
indices may be calculated from empirical data. For example, the graph-
theoretical network properties of the empirical connectome may be in-
volved in the analysis as well (Rubinov and Sporns, 2010). Selecting and
investigating a few most important data variables with respect to their
impact on the modeling results, and on a data-driven analysis of brain
networks, could advance our understanding of the results’ variability
across subjects and parcellations.
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Appendix A. Supplementary Figures

Phase oscillators | Phase oscillators LC oscillators LC oscillators
Parcellation || Fit(sFC, eFC) | Fit(sFC, eSC) | Fit(sFC, eFC) | Fit(sFC, eSC)
S100 0.25 + 0.07 0.52 £+ 0.05 0.28 4+ 0.08 0.56 + 0.04
S200 17+ 24 % -14+8% T+17T% 20 £5 %
5400 10+ 23 % 21 7% -4 4+17% 305 %
S600 144+ 26 % 33 +6% 4+17% BT 5%
HO96 0% 76 + 47 % 3+10% 75 + 44 % -6+ 11 %
HO96 25% 72 4+ 49 % 5+10% 73 4+ 43 % BE11%
HO96 35% 69 + 46 % 5+11% 68 + 42 % -1+£12%
HO96 45% 61 + 42 % 3+12% 59 + 39 % 1+12%
Shen79 80 + 56 % 8+ 11 % 80 4 48 % 6+9%
Shen156 61 + 46 % T+9% 52 + 36 % 1127 %
Shen232 43 + 37 % 15 28 % 24 + 29 % 13 +£8%

Table A.1: Relative change of the best model fit (mean + standard deviation, in %) with respect to the case S100 (the
corresponding fitting values for S100 are included in the top row) for the two model fitting modalities Fit(sFC,eFC)
[Fig. 3] and Fit(sFC, eSC) [Fig. 4], and the two considered models of coupled phase and limit-cycle (LC) oscillators as
indicated in the first row.
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Figure A.1:
B) Fit(sFC, eFC) and (C, D) Fit(sFC, eSC) between different parcellations and for (A, C) phase model and (B, D)
limit-cycle model. The differences Fit(column) _ Fjt(row) were examined for the Fit-values calculated for the parcellations
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Effect size as given by Cohen’s d values of the paired comparison across subjects of the fitting values (A,

indicated on the horizontal axes (columns) and vertical axes (rows), respectively. The corresponding cells of the table
contain the calculated Cohen’s d values explicitly indicated and depicted by color. The corresponding p-values of the
paired Wilcoxon signed-rank test are illustrated in Figs. [3] and [4]
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LC model: Fit(sFC,eFC)
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Figure A.2: Examples of parameter planes and distributions of the optimal parameters of similarity corr(sFC,eFC)
(two upper rows) and corr(sFC,eSC) (four lower rows) for limit-cycle model and phase model as indicated on
top of the plots and for parcellations indicated in the plots. The colored panels (uneven rows) are parameter planes
of the model-data similarity averaged over all subjects/fMRI scans, where individual planes were first normalized by
their maximal values. The black curses delineate the contour lines of 90% of maximum. The distribution of the optimal
parameters (2Dim histograms in even rows) were calculated from all 5 values of the largest similarity values detected for
every individual parameter plane, see Fig. and D (white circles and blue diamonds).




OV Popovych et al.: Inter-subject and inter-parcellation variability of whole-brain dynamical modeling
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Correspondence between the inter-individual variation of the optimal model parameters where the best

correspondence between simulated and empirical data is achieved for the considered parcellations and models. Relative
differences between the optimal parameters Pi = (71,C1) and P2 = (72,C?) for a given subject/fMRI session and for
two different parcellations were calculated as < (P — P2) /[(PL+ P2) /2]| > with element-wise division and averaging
(-) over all subjects/fMRI sessions. The calculation results performed for any two parcellations (indicated on the axes)
are illustrated for (A - C) Fit(sFC, eFC) and (D - F) Fit(sFC, eSC), and for (A, D) phase model and (B, E) LC
model. In plots (C and F) the correspondence between the phase model (parcellations on the vertical axes) and LC

model (parcellations on the horizontal axes) is illustrated. The results are depicted by color, and their magnitudes are
indicated in the plots. The heavy red lines delineate the parcellations from the same atlas (parcellation family).
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Figure A.4: Relationship between the fitting results (E[) of LC model and empirical data. (A, B) Pearson correlation
across individual subjects between the maximal similarity Fit(sFC, eFC) and several data variables indicated on the
horizontal axis. The correlation was calculated for (A) different individual parcellations indicated on the vertical axis
and (B) joint data merged over a few combinations of the considered parcellations as indicated on the vertical axis:
all parcellations of the Schaefer atlas, Harvard-Oxford atlas, Shen atlas and all 11 considered parcellations (last row).
The correlation is depicted by color, and its magnitude is indicated in the plot. The crossed out cells indicate that the
corresponding correlation does not reach the statistical significance with p < 0.05.
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Figure A.5: Relationships between the results of the structure-functional model fitting and empirical data. Pearson
correlation between the maximal similarity Fit(sFC, eSC) and several statistical properties (data variables) extracted
from the empirical data (see text for details) indicated on the horizontal axes for different parcellations and their
combinations (vertical axes). The correlation was calculated for (A, B) phase model (I}) and (C, D) LC model (@), and
for (A, C) different individual parcellations and (B, D) joint data merged over a few combinations of the considered
parcellations (vertical axes): all parcellations of the Schaefer atlas, Harvard-Oxford atlas, Shen atlas and all 11 considered

parcellations (last row). The correlation is depicted by color, and its magnitude is indicated in the plot. The crossed

cells indicate that the corresponding correlation does not reach the statistical significance with p < 0.05.
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Figure A.6: Modeling the maximal structure-functional similarity Fit(sFC, eSC) by the multiple linear regression (MLR)
model with data variables from Fig. m as independent variables. (A, B) Regression coefficients of the MLR model of
Fit(sFC, eSC) for all considered parcellations including the joint data as indicated on the vertical axes for (A) phase
model (1) and (B) LC model . The values are depicted by color, and they magnitudes are shown in the plots. The
crossed out cells indicate that the corresponding coefficient does not reach the statistical significance with p < 0.05. (C)
Scatter plot for joint data merged over all considered parcellations with the regression line of the Fit-values predicted
by MLR versus Fit(sFC, eFC) obtained by simulations of the phase model . The diagonal is depicted by thin black
line for comparison. The fractions of the explained variance R2 is also shown in the scatter plot and in plot (E) for all
individual parcellations for both phase and LC models as indicated in the legend. The dashed lines depict R? for the
joint data also indicated in the legend.
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Whole-brain dynamical modelling
for classification of Parkinson’s disease

®Kyesam jung,"2 ®Esther Florin,> ®Kaustubh R. Patil,'? Julian Caspers,4
Christian Rubbert,? ®Simon B. Eickhoff''? and (»Oleksandr V. Popovych'?

Simulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and model-
ling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated
whole-brain connectome-derived features can be utilized to classify patients with Parkinson’s disease against healthy controls in light
of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived
by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and
controls. In addition to the widely used model validation via fitting the dynamical model to empirical neuroimaging data, we invented
amodel validation against behavioural data, such as subject classes, which we refer to as behavioural model fitting and show that it can
be beneficial for Parkinsonian patient classification. Furthermore, the results of machine learning reported in this study also demon-
strated that the performance of the patient classification can be improved when the empirical data are complemented by the simulation
results. We also showed that the temporal filtering of blood oxygenation level-dependent signals influences the prediction results,
where filtering in the low-frequency band is advisable for Parkinsonian patient classification. In addition, composing the feature space
of empirical and simulated data from multiple brain parcellation schemes provided complementary features that improved prediction
performance. Based on our findings, we suggest that combining the simulation results with empirical data is effective for inter-indi-
vidual research and its clinical application.
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Simulated features from the whole-brain modeling improve
classification of patients with Parkinson’s disease.
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Introduction

For decades, large-scale whole-brain connectivity acquired
from non-invasive in-vivo MRI has actively been used to
study the human brain as an integrative complex system.’
Accordingly, anatomical (or structural) and functional con-
nectivities between brain regions have been used. Previous
studies have shown that the structural architecture shapes
the temporal synchronization between the blood oxygen-
ation level-dependent (BOLD) signals in selected networks,
for instance the default mode network.>® However, the
structure-function correspondence is not high for whole-
brain connectivity.*® The correspondences between the
brain connectomes of the same and different subjects, sam-
ples or data modalities”® have been considered to investigate
the inter-individual differences’ or diagnostic classification
between healthy controls (HCs) and patients.*'%12
Connectivity relationships are also commonly used
when brain dynamics are modelled by mathematical whole-
brain dynamical models. In particular, finding the strongest

correspondence (the highest similarity) between empirical
functional connectivity (eFC) and simulated functional con-
nectivity (sFC) has been used for model validation.'>™"°
Such a correspondence of the simulated data to the empirical
data may undergo qualitative changes when parameters of a
given model vary and the validation procedure consists in
finding the most pronounced agreement between the data
and the model fitted by searching for optimal parameter
points.

Previous studies utilizing the discussed whole-brain model-
ling showed that the employed modelling approach was applic-
able to clinical research. The variability of the model parameters
between diseased and healthy states has been investigated for
brain disorders including schizophrenia,'®™"* Alzheimer’s dis-

21,22

ease,”® Parkinson’s disease and stroke patients.*® For in-

stance, Saenger et al.>> showed that therapeutic deep brain

stimulation in Parkinson’s disease can be modelled by the nor-

124

mal form of a Hopf bifurcation model.” Detailed simulations

of neuronal dynamics may also provide a way to test prognostic
outcomes i silico throughout virtual operations and optimize

the setup and parameters of therapeutic interventions.”> %
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Brain modelling for Parkinson’s disease

There are, however, no well-established standards for
model validation against empirical data. Several fitting mo-
dalities have been suggested in the literature, including the
fitting of the grand-averaged empirical and simulated FC ma-
trices, fitting the dynamical FCs, maximization of the meta-
stability and structure-functional model fitting®!3242%:30
On that account, it is necessary to investigate, which param-
eter points of a given dynamical mode and which model fitting
modalities are the most suitable to answer a given research
question by the modelling approach. For example, it was ob-
served that the distributions of the optimal model parameters
differ when using only functional or structure-functional
model fitting and may lead to subject stratifications showing
different model fitting values and optimal parameter points.>°
It is also well known that varying parameters of MRI data
processing influence the empirical structural and functional
connectomes and their analyses.’'* This subsequently af-
fects model validation.®>*° Therefore, the impact of data
processing on the results of model validation should be care-
fully considered, especially in clinical applications.

In Parkinson’s disease research, the eFC of the resting-
state networks was already being used in machine learning
approaches to subject classification.’®*” When sFC is in-
volved, it is essential to extract relevant features for
Parkinson’s disease classification from simulation results
via searching in a given model parameter space for the opti-
mal model. To do this, we considered two aspects of para-
meters regarding dynamical models and data processing.
First, we find the model parameters that reveal the most
prominent differences in connectome correspondence be-
tween Parkinson’s disease and HC. Such an approach can
be used for model validation. Here, we aim at a diagnostic
classification of patients from healthy subjects, where the
model fitting to behavioural (phenotypical) data might be
an alternative approach for model validation. We attempt
to provide a way to reveal and maximize the group difference
in simulated results by varying the parameters of dynamical
models. For instance, the disease status of the subjects can be
used for behavioural fitting, as we show in this study.
Second, we consider different temporal filters of BOLD sig-
nals, which are known to influence FC properties.’**” In
particular, the altered frequency bands were found to retain
Parkinson’s disease-related neural changes.*” The frequen-
cies of empirical BOLD signals, when included in the whole-
brain mathematical models, may influence the optimal
model parameters and the quality of the model fitting.®>°
In this context, investigation of the impact of temporal filter-
ing conditions on the model validation in Parkinson’s disease
data is important.

In the current study, we advance the classification of clin-
ical data by application of machine learning to empirical and
simulated connectomes. The functional connectomes were
calculated from empirical and simulated BOLD signals, re-
spectively, filtered in broad-, low- and high-frequency bands
for two different brain parcellations as given by the
Schaefer”' and Desikan—Killiany** brain atlases. As com-
pared with purely empirical studies, we take the next step
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based on the two aspects of parameters for model fitting mo-
dality and data processing and employ the simulated data to
improve the prediction results in a machine learning setting.

The current study employs whole-brain dynamical model-
ling of the resting-state functional MRI data based on the
Jansen—-Rit model type of interacting excitatory and inhibi-
tory neuronal populations.**** The simulated FCs generated
for the optimal model parameters based on model fitting mo-
dalities were used to calculate the connectome relationships
(Pearson’s correlation) with empirical structural and func-
tional connectivities. We also introduced a simple but effect-
ive method for model validation against behavioural data
more suitable for differentiation between patients with
Parkinson’s disease and HCs than the conventionally used
model fit to neuroimaging data. Consequently, the persona-
lized features derived from the connectome relationships
were used in this study for classification of Parkinson’s dis-
ease and HC using machine learning. We in particular
show that complementing empirical data with simulated
FC can improve the prediction performance for unseen sub-
jects. Our results suggest that the personalized whole-brain
models can serve as an additional source of information rele-
vant for disease diagnosis and possibly for their treatment as
well.

Materials and methods

We performed three main steps to obtain the whole-brain
connectivities eFC, eSC (empirical streamline counts), ePL
(empirical average path length) and sFC. Figure 1 schematic-
ally illustrates the data processing and simulation workflow.
We applied four temporal filtering conditions to empirical
and simulated resting-state BOLD signals. Subsequently,
we considered three types of connectivity relationship corre-
sponding to the correlation between eFC and eSC, the correl-
ation between eSC and sFC and the correlation between eFC
and sFC. Since sFC was calculated by varying the two free
model parameters of global coupling and global delay, the
correlations involving sFC change, as illustrated by the
eFC-sFC correlation landscape in the parameter space in
Fig. 1 (the rightmost colour plot). We used these three con-
nectivity relationships as features for the Parkinson’s disease
classification via a machine learning approach. To this end,
we trained Parkinson’s disease classifiers and evaluated their
performance based on prediction probabilities obtained on
unseen subjects.

The three considered whole-brain connectivities (eFC, eSC
and sFC) were calculated for 51 (30 males) HC and 65 (45
males) patients with Parkinson’s disease, see Table 1 for
the demography. Patients and controls were included in an
MRI data pool acquired at the University Hospital
Dusseldorf, Germany, which was also used in several recent
studies,®®37*54¢ \where additional details about the data
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Figure | Data processing and simulation overview. First (upper box), brain parcellations in the native space of T;w were prepared and
applied to the processed functional MRI data, BOLD signals were extracted from the corresponding brain regions and filtered according to four

temporal filtering conditions (right bottom box) and four respective eFCs were calculated. Second (middle box), the parcellations were also used
for the calculation of the structural connectivity by extracting streamlines from the WBT reconstructed using DWIs, where the number and length
of streamlines connecting any two brain regions were collected into matrices of eSC and ePL. Third (lower box), the structural connectome (eSC
and ePL) was used to build a brain network for the whole-brain modelling that simulates BOLD signals, which were filtered according to the
considered filtering conditions (right bottom box) and used to calculate sFC. Subsequently, we calculated connectivity relationships (Pearson’s
correlation) using these three connectivity matrices: (i) corr (eFC, eSC); (i) corr (sFC, eSC); and (ii) corr (eFC, sFC). Model parameters for global
coupling and global delay were varied to validate the model against empirical data. In particular, the correspondence (correlation) between eSC
and eFC and sFC was calculated for each parameter point, resulting in similarity landscapes in the model parameter space, see the example of the
relationship between eFC and sFC in the rightmost colour plot. The most pronounced correspondence (correlation) between the empirical and
simulated connectomes was selected, together with the respective optimal model parameters, as a result of the neuroimaging model fitting for

further analysis.

Table | Demography of subjects included in the study

Groups Mean (standard deviation) years Statistical tests P-values
All subjects Ve goodness-of-fit test
All 58.93 (10.25) 116 subjects 0.149
HC Patients Wilcoxon rank-sum two-tail test
All 55.02 (9.69) 62.00 (9.62) 51 HC versus 65 patients 0.000
Female 56.52 (9.40) 60.80 (8.96) 2| HC versus 20 patients 0.201
Male 53.97 (9.74) 62.53 (9.85) 30 HC versus 45 patients 0.001
Females Males Wilcoxon rank-sum two-tail test
All 58.61 (9.43) 59.11 (10.67) 4| females versus 75 males 0.751

can be found. All patients were diagnosed with Parkinson’s
disease by an experienced movement disorder specialist. All
HC subjects had no history of any neurological or psychi-
atric disease and no abnormalities were detected in cranial
MRI. The ages of 116 subjects (mean: 58.9 years and stand-
ard deviation: 10.3 years) are in a normal distribution (the
null hypothesis was not rejected by a y* goodness-of-fit test
with P=0.15). The age of patients was significantly higher

than that of controls (Wilcoxon rank-sum two-tail test).
The age of male patients was significantly higher than
that of male controls, but the age of females was not from
distributions with different medians. There was no age dif-
ference between females and males (Table 1). The study was
approved by the local ethics committee and performed in
accordance with the Declaration of Helsinki. All subjects
provided written informed consent prior to study inclusion.
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Structural and functional MRI data were acquired usinga 3 T
scanner (Siemens Trio). A structural brain image was acquired
using a 3D T{-weighted image (T{w) sequence (TR=2.3s,
TE=2.96 ms, TI=900 ms, flip-angle=9°, field-of-view =
240 x 256 mm? in sagittal, the number of slices = 160, voxel
dimension=240x256 x 160, voxel size=1.0x1.0x1.1
mm?). Diffusion-weighted images (DWI) comprised a single
non-weighted (By) image and weighted (B=1000 s/mm?)
images with 64 directions (TR =6.7 s, TE = 81 ms, phase en-
coding: anterior to posterior, field-of-view =216 x216 mm?*
in axial, the number of slices=3535, voxel dimension=90 x
90 % 55, voxel size =2.4 X 2.4 x 2.4 mm?>). Resting-state func-
tional MRI was obtained using an echo-planar imaging se-
quence during 663 s (TR=2.21s, TE=30 ms, field-of-view
=200 %200 mm? in axial, the number of slices = 36, voxel di-
mension =64 X 64 x 36, voxel size=3.125x3.125x3.565
mm?). To prevent the distraction of streamline tracking, arte-
fact volumes of DWI were removed from the data based on
evaluation by two raters.

For the personalized data processing, we developed a contain-
erized in-house pipeline to process structural and functional
MRI in the native spaces. The pipeline consists of five mod-
ules: preprocessing of structural MRI (T;w and DWTI), whole-
brain tractography (WBT) calculation, atlas transformation,
reconstruction of structural connectivity (eSC and ePL) and
preprocessing of functional MRI. The pipeline comprises
Freesurfer,*” FSL,*® ANTs,* MRtrix3°° and AFNL®! It is
publicly available (https:/jugit.fz-juelich.de/inm7/public/vbc-
mri-pipeline).

The preprocessing module of structural MRI performed
the following steps: bias-field correction for Tw, alignment
of anterior-posterior commissures of Tyw, recon-all by
Freesurfer, removing the Gibbs ringing artefacts of DWTIs,
bias-field correction for DWIs, corrections of head motion,
b-vector rotations and eddy distortion of DWIs and
co-registration between averaged DWI and T ;w. This mod-
ule segmented subcortical areas based on voxel intensities
of the Tyw. It also prepared labelling annotations using a
brain atlas, for which a classifier was available from the lit-
erature. The annotation can also be created based on a sub-
ject cohort by capturing region data either drawn by
neuroanatomists or according to dedicated algorithms.**

The WBT calculation module included only MRtrix3
functions. They estimated response functions for spherical
deconvolution using the constrained deconvolution algo-
rithm.>® Fibre oriented distributions (FODs) were esti-
mated from the DWIs using spherical deconvolution, and
the WBT was created through the fibre tracking by the
second-order integration over the FOD by a probabilistic
algorithm.>* In the latter step, we used 10 million total
streamlines for the WBT density. The tracking parameters
of the tckgen function were set as in the previous study:*°
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step size =0.625 mm, angle =45°, minimal length=2.5 mm,
maximal length =250 mm, FOD amplitude for terminating
tract=0.06, maximum attempts per seed = 50, the maximum
number of sampling trials=1000 and downsampling=3
(FOD samples per steps—1).

The atlas transformation module annotated labels using a
classifier to parcel cortical regions in the native T{w space using
Freesurfer. In the present study, we applied two atlas classifiers
for brain parcellations, the Schaefer atlas with 100 parcels*!
and the Desikan—Killiany atlas with 68 parcels.** Both atlases
provide cortical parcellations, where the former is based on
functional MRI data, while the latter is labelled by gyral-based
anatomical parcellation. After this, the subcortical areas seg-
mented by the preprocessing module were included and com-
bined with the labelled cortical parcels. Finally, the pipeline
transformed the labelled image (cortical parcels and subcortical
regions) from the T;w to DWI native spaces.

The reconstruction module calculated the matrices of the
streamline counts (SCs) and the matrices of the average
path lengths (PLs) of the streamlines extracted between any
two parcellated brain regions from the calculated WBT
with the transformed, labelled image in the DWI space.

The preprocessing module of functional MRI performed
slice time correction, head motion correction, re-slicing in
a 2 mm iso-cubic voxel space, intensity normalization, de-
trending with filtering of very slow fluctuations out (high
pass), co-registration to the T;w and calculation of regres-
sors for the white matter, cerebrospinal fluid (CSF) and brain
global signals as well as for the head motion. The pipeline
also transformed the labelled image of the brain parcellation
generated in the native Tyw space to the functional MRI na-
tive space. Finally, we performed a nuisance regression with
the prepared regressors (white matter, CSF and the brain glo-
bal signals, as well as head motions).

After preprocessing of MRI, we extracted mean BOLD sig-
nals based on the annotated atlas labels and applied three
temporal band-pass filtering conditions in the frequency
ranges of (0.01,0.1) Hz (broad-frequency band; BF),
(0.01,0.05) Hz (low-frequency band; LF) and (0.05,0.1)
Hz (high-frequency band; HF). Therefore, four filtering con-
ditions were considered: no filtering (NF), BF, LF and HF.
The filtering was done using a script in the Python program-
ming language (version 3.8, Python Software Foundation,
https:/’www.python.org/) using the SciPy (version 1.5) signal
processing module®® and NumPy’® (version 1.19) for the
temporal band-pass filtering. We used the Butterworth digit-
al filter of order 6, scipy.signal.butter.

The whole-brain resting-state dynamics considered in this
study was simulated by a system of N coupled neuronal
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models representing the mean brain regional activity.
Each region contains two populations for each neuronal
type (excitatory and inhibitory) that interact with each
other via postsynaptic potentials (PSPs).**> The considered
convolution-based model is of the Jansen—Rit type**°” and
simulates the PSP signals involving other brain regions that
interact with time delay in coupling according to the calcu-
lated structural connectivity, i.e. SC and PL matrices. The
following set of differential equations describes the mean dy-
namics of the excitatory and inhibitory PSPs of region n=1,
2 N

5 eeey 5

Vie(E) = Zne(t), (1)

V() = 2ui(2), (2)
Zne(t) = Ppo(t) = 2R, 20 (t) = @ Royne(t) + 11,0, (3)
Zni(t) = Ppi(t) = 26Ry20i(2) = D*R3yi(0) + 1,05
n=1,2, ..., N.

(4)

Here, 2,0, 2ni> Yne and y,,; are the excitatory postsynaptic
current, the inhibitory postsynaptic current, the excitatory
PSP (EPSP) and the inhibitory PSP (IPSP) of the brain region
n, respectively, where the subscripts e and i stand for excita-
tory and inhibitory, accordingly. The model (1)—(4) is a sys-
tem of driven harmonic oscillators in a critical damping
regime, where the system quickly returns to its steady state
after perturbation without undershooting. Parameters a
and b represent the reciprocal of the time constants of the
PSP kernel for the two populations for EPSP and IPSP, re-
spectively. #,, and 7,; are independent noise sampled
from a random uniform distribution between —1.5 and
1.5 V/s%. For frequency of oscillations, we also introduced
a scaling factor R. By increasing R, the spectral power of
the PSP signals shifts to higher frequencies. Perturbation
P, . drives EPSP oscillations regarding input signals
from other regions, i.e. it models the coupling between
the network nodes/brain regions and P,,; perturbs IPSP
oscillations by the input from the excitatory population in
the same region 7,

CE
— 2 § P
Pn,e(t) = A(ZRnO'e (N Cnmym,e(t - Tnm) - Cetyn,t(t)>a (5)

m#n

P,.i(t) = BbR26/(Cieyne(t), n=1,2, ---, N. (6)

A and B are the maximum amplitudes of the PSP kernels for
EPSP and IPSP, respectively. N is the total number of brain
regions/network nodes for the whole-brain model. In
Equation (5), Cis a global coupling parameter, which scales
the couplings throughout the whole-brain network. C,,,,, is
the strength of the individual coupling from region m to re-
gion n, which is realized via weighting the EPSP signal of the
m-th network node y,, . considered with time delay z,,,.
Parameter C,; weights an input coming from the inhibitory
population of the same brain region, i.e. IPSP vy, ;. The

K. Jung et al.

individual time delays and coupling strengths between re-
gions m and 7 can be estimated from the empirical data as

wnm
Tnm = Tglobaanma Com = W’ (7)

where the averaged path length L,,,,, (from the matrix PL) of
the reconstructed streamlines between regions 7 and m is
scaled by a global delay parameter zgopa. Cpp in
Equation (7) calculates an individual coupling strength by
taking into account the SC matrix, where the number of
streamlines w,,,, between the two regions was normalized
by an averaged number of streamlines W calculated over
all connections except for the self-connections. As follows
from Equation (5), the coupling between brain regions is
realized between the excitatory populations, where the de-
layed EPSP signals from the other brain regions composed
the coupling term. Together with the intra-regional coup-
ling by the IPSP signal from the inhibitory population, the
total PSP input to the excitatory population is converted
by a nonlinear sigmoid function o,(v) given in Equation (8) be-
low to an averaged firing density. The inhibitory population in
region n received an input EPSP signal weighted by parameter
C;. from the excitatory population of the same region only,
which was again converted to an averaged firing density by
the following sigmoid function o;(v):

_ Fe _ Fi
= Trewn M= T

(8)

oe(v)

In Equation (8) of the mentioned sigmoid functions, the par-
ameter 7 is a slope, vg is a half of the maximal neural activity
and parameters F, and F; are the maximal firing densities of
the excitatory and inhibitory populations, respectively.
Parameter values of the considered two-population model
Equations (1)—(8) are given in Table 2.

We calculated the regional BOLD signals using the corre-
sponding EPSP signals simulated by the electrical model
Equations (1)—(8) introduced in the previous section.
Several examples of the time courses of the EPSP signals gen-
erated by the considered model and their power spectra are
illustrated in Supplementary Fig. 1. Neurovascular coupling
and hemodynamic responses constitute the process reflected
in the Balloon-Windkessel (BW) model that was utilized to
convert the simulated neural activity to BOLD signals,”®~%°
see details in the Supplementary material.

In this study, we considered two model fitting approaches:
neuroimaging model fitting and behavioural model fitting.
The former is well known in the literature and consists of val-
idation of the model via comparing simulated data against
neuroimaging empirical data. In this study, the Pearson’s
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Table 2 Parameter values of the electrical model and the BW model

Electrical model Variables Values BW model Variables Values
Max. sigmoid (excitatory) Fe 100s™" Echo time TE 30 ms
Reciprocal of the time constant of the EPSP kernel a 100* s~ Mean-transit-time tmTT 2°s
Max. EPSP A 325 mV Net oxygen extraction fraction at rest Eo 0.4°
Max. sigmoid (inhibitory) F; 505~ Venous blood volume fraction Vo £ %
Reciprocal of the time constant of the IPSP kernel b 50* s~ Frequency offset for 3 T % 80.6° s~
Max. IPSP B 22° mV Ratio of intra/extra-vascular signal I3 0.3°
Slope of sigmoid r 0.56* mv~' Sensitivity (regression slope) ro 25° 57!
50% neural activity Vo 6’ mV Steady state flow-volume relationship a 0.38°
Intra-regional coupling Cie Rate constant for damped oscillations K 0.64° Hz
(from excitatory to inhibitory)
Intra-regional coupling Cei Rate constant for damped oscillations y 0.32° Hz
(from inhibitory to excitatory)
Scaling factor R Values of initial conditions [s, fs v, q] [o,1,1,17¢

Amplitude of noise

1.5 V/s?

aValues from Jansen and Rit study.44
bValues from Havlicek et al.*®

cValues empirically determined based on the trajectories generated by the BW model.

EPSP, excitatory postsynaptic potential; IPSP, inhibitory postsynaptic potential.

correlation coefficient between eFC and sFC (comparing the
upper triangle without self-connections of the connectivity
matrices) was calculated and denoted as goodness-of-fit
(GoF) values. Searching for the maximal GoF in a given par-
ameter space is a well-established approach for model valid-
ation in whole-brain modelling studies."*™' In this study, we
optimized the coupling and delay model parameters to maxi-
mize the GoF value on a parameter grid of 64 x 43 points (64
global couplings and 43 global delays) densely covering the
parameter plane, respectively. In addition, we also consid-
ered the connectivity relationship between eSC and sFC as
for separate neuroimaging model fitting. In consequence,
two types of neuroimaging model fitting (eFC versus sFC
and eSC versus sFC) were used in this study. As this proced-
ure fits the model to the connectivity derived from the empir-
ical neuroimaging data, we term it neuroimaging model
fitting.

We also introduce bebavioural model fitting as a proced-
ure to validate a model against behavioural data, for ex-
ample, optimizing the model to reflect some behavioural
(phenotypical) properties to the best possible extent. In this
study, we optimized the parameters of the model to max-
imally differentiate between Parkinson’s disease patients
and HC subjects. For this, we calculated the effect size based
on the z-statistics of the Wilcoxon rank-sum two-tail test as
given by the Rosenthal formula, i.e. the normal z-statistics
divided by the square root of the number of observations®’
of the difference between the (neuroimaging) GoF values of
the HC and Parkinson’s disease subject groups. The effect
size was calculated for every parameter point in the consid-
ered parameter space of 64 x43 grid and represented as a
parameter map. In this way we obtained a parameter land-
scape of the group differences and were able to investigate
the differentiation of GoF values of Parkinson’s disease pa-
tients from those of HC subjects. This parameter landscape
reflects the relation of the model GoF to the behavioural

data (in this study, to the differentiation based on clinical
measures), and we thus used this approach as behavioural
model fitting. To evaluate the parameter areas of significant
group difference, we performed the Wilcoxon rank-sum
two-tail test and obtained a corresponding P-value parameter
map. Due to the multiple comparisons over the parameter
points, we applied the random-field thresholding scheme®>%?
using a 2D Gaussian kernel smoothing. Subsequently, we
obtained a Z-score map and thresholded it to retain statistic-
ally significant parameter areas (alpha=0.05). Finally, we
searched for the optimal model parameters within the signifi-
cant parameter areas corresponding to the maximal effect
size. We considered two connectivity relationships (eFC
versus sFC and eSC versus sFC) for the behavioural model
fitting.

We performed a random sampling to test the stability of the
optimal parameter points for the behavioural model fitting.
To do this, the stability of the results was assessed by sex-
balanced stratified subsampling. After a random sampling
of 72 subjects (36 HC subjects and 36 Parkinson’s disease
patients) out of 116 subjects, we applied the behavioural
model fitting to the sampled subjects and found optimal
parameters corresponding to the largest effect size. The
subsampling and the corresponding calculations were re-
peated 1000 times.

The current task is to train a binary classifier (Parkinson’s
disease versus HC) using 10 features (five connectivity
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relationships from two parcellation schemes), which are of
lower dimension than observations (116 subjects). We con-
sidered a simple regularized logistic regression that is a
sparse method possessing good interpretability and is
known to work well in many applications.®*™°® There might
be other methods that could give better accuracy.®” The
main goal of the current study was however to compare
the prediction results between several computational condi-
tions including data processing and model validation. This
could be demonstrated using such a linear (interpretable)
machine learning method without an exhaustive search
for the methods and conditions for the best performance.
Thus, logistic regression is applicable to the current study.
To this end, we used a regularized logistic regression with
the least absolute shrinkage and selection operator
(LASSO) for training and classification of HC versus
Parkinson’s disease subjects.®® To avoid an overfit, the
training error included the deviance and an L-penalty.®’
We used the lassoglm function for the logistic LASSO re-
gression and the glmval function for predicted probability
calculation in the Statistics and Machine Learning
Toolbox of MATLAB R2020b.

We used a cross-validation (CV) scheme to train the logistic
LASSO regression for Parkinson’s disease classification. As
for a degenerative disease,””! features for Parkinson’s dis-
ease classification should be controlled by an age effect via
a confound regression. Due to a random sampling from the
same cohort and the usage of the same data for model val-
idation and model training, it is important to prevent pos-
sible data leakage during the CV procedure, especially for
behavioural model fitting as it uses data across subjects.
Otherwise, the trained models might be biassed due to the
usage of the results of the behavioural model fitting derived
from Parkinson’s disease classification against HC. In this
respect, we followed the ideas of the cross-validated con-
found regression’? as illustrated in Fig. 2. Specifically, we
applied the CV-consistent approach to features derived
from the empirical result, neuroimaging and behavioural
model fitting. Accordingly, the subjects were split into
training and test sets (Fig. 2, green and orange blocks in
the outer loop) and the optimal parameter point of the be-
havioural model fitting was calculated on the training set
at every iteration of the outer CV loop (Fig. 2, the green
box with the Circle 1). Then the respective connectome re-
lationships were calculated for every subject. Next, the age
was regressed out for these subjects (cross-validated con-
found regressions in Fig. 2, Circles 1 and 2) from the ob-
tained features of connectivity relationships used for
subject classification. The optimal model parameters and
the regression coefficients obtained for the training set
were then used for the connectome calculation and the
age regression for the test subjects.

K. Jung et al.

In order to avoid over-optimistic results of CV,”® we used
nested CV to train the logistic LASSO regression for
Parkinson’s disease classification (Fig. 2). In the outer loop,
we randomly split the subjects into five subsets. One subset
of 20% of subjects was considered as a test set (unseen sub-
jects, the orange box in the outer loop in Fig. 2) and the other
four subsets were pulled together and composed a training
set (the green boxes in the outer loop in Fig. 2). As explained
above, we first applied the cross-validated model fitting and
confound regression to the features in the training set (Fig. 2,
the green box with the Circle 1). Subsequently, the training
set (age-controlled) was split into ten subsets for the nested
CV in the inner loop. A logistic LASSO regression model
was trained with the hyperparameters minimizing the
10-fold CV error. This model was then applied to predict
the test set. As follows from the aforementioned, the age-
controlled training and test sets were used for model training
and prediction, respectively. The training and testing proced-
ure we performed can be summarized as follows:

(i) Randomly split the entire subject cohort into five
subgroups.

(ii) Select one group as a test set and compound the others
into a training set.

(iii) Perform the cross-validated (behavioural) model fit-
ting using the training set and extract respective con-
nectome relationships corresponding to the optimal
model parameters.

(iv) Perform the cross-validated confound (age) regression
for the training set from the features based on the con-
nectome relationships used for classification.

(v) Train the logistic LASSO regression model in the inner
loop with a 10-fold CV that minimizes errors in the
prediction model.

(vi) Apply the trained best model to predict the test set with
age regression, where the optimal model parameters of
the model fitting and age regression coefficients ob-
tained for the training set were used (Fig. 2, the dashed
arrow in the outer loop).

(vii) Calculate the model performance using a confusion
matrix and an receiver operating characteristic
(ROC) curve.

(viii) Perform Steps (ii)—(vii) for the other four subsets split
in Step (i) as test sets in the outer CV loop (five predic-
tion results).

(ix) Repeat Steps (i)—(viii), 50 times (250 prediction results
in total).

For Parkinson’s disease classification based on the discussed
machine learning approach, we considered five features for
each of the two parcellation schemes (Schaefer and
Desikan—Killiany atlases), i.e. 10 features in total: corr
(eFC, eSC) as an empirical feature, corr (eFC, sFC) and
corr (eSC, sFC) as simulated features for each model fitting,
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Figure 2 Schematic illustration of cross-validated model fitting, cross-validated confound regression and nested CV. The boxes
under the ‘Training set’ in the leftmost plot illustrate randomly split subject subgroups used for training the model in the 5-fold outer loop and in
the 10-fold inner loop. The box under the ‘Test set’ in the outer loop depicts the testing subject subgroup used for evaluation of the prediction
performance of the trained model as given by accuracy, sensitivity, specificity, balanced accuracy and area under the ROC curve. P, positive as
patients; N, negative as controls; TP, true positive; FP, false positive; TN, true negative; FN, false negative.

i.e. the neuroimaging model fitting and the behavioural mod-
el fitting. To investigate the impact of simulated results on
the Parkinson’s disease prediction, we composed the consid-
ered features into three conditions: (i) empirical features only
(shuffle simulated features); (ii) simulated features only
(shuffle empirical features); and (iii) all features (no shuf-
fling). The shuffling was performed by a random re-
distribution of the values of a given feature among subjects
such that the correspondence of the feature to individual sub-
jects was destroyed. By focusing on some features (connec-
tome relationships and parcellations), the other features
were shuffled. For example, to focus on the empirical fea-
tures of the Schaefer atlas, four simulated features (eFC ver-
sus sFC and eSC versus sFC for two model fitting modalities)
of the Schaefer atlas and all five features (one empirical and
four simulated features) of the Desikan—Killiany atlas were
shuffled. The shuffling was performed for every feature sep-
arately, randomizing feature values across subjects while re-
taining distributional properties (Supplementary Fig. 2).
After feature selection, model training and application of
the trained model to the unseen test subject set, we calculated
a confusion matrix from the prediction results and plotted a
ROC curve.”* The latter was calculated from the prediction
results obtained by varying the subject classification thresh-
old of a predicted probability from 0 to 1. Then, we calcu-
lated the prediction performance (accuracy, sensitivity,
specificity and balanced accuracy) and the area under a curve
(AUC) of the ROC curve.

In addition to the prediction considering the cross-
validated confound regression with subjects’ ages using the
entire cohort, we also applied the same approach to a ba-
lanced subject configuration by excluding the 17 oldest

Parkinson’s disease patients from 116 subjects. Thus, the ba-
lanced cohort has no significant age difference between
Parkinson’s disease and HC groups with balanced group
sizes (see Supplementary Table 1). Subsequently, we ana-
lysed the prediction performances of the balanced subject co-
hort (99 subjects).

Statistical analysis was performed using functions in the
Statistics and Machine Learning Toolbox of MATLAB
R2020b. We set significance level at P<0.05. We applied
the Bonferroni correction to prevent multiple comparison is-
sues when the test was used multiple times. Statistical tests
used in the results were mentioned in each legend of figures
and tables. We also scrutinized the prediction probabilities
for individual subjects to evaluate the model’s performance.
Here, the trained model estimated the predicted probabilities
for each subject in the test set. Subsequently, we calculated a
fraction of actual positives and showed relationships using
probability calibration. The ideal case is to have the same va-
lues for the fraction of positives and the predicted probabil-
ity, i.e. the graph should align to the diagonal. In clinical
applications, the tight correspondence between predicted
probabilities and the fraction of actual positives provides
high trustworthiness for diagnosis.”* To this end, we used
the Brier score’® to calculate the mean-squared error of
each predicted probability against an ideal case. We also
used the Wasserstein distance to show how much cost is re-
quired to turn a given distribution of the predicted probabil-
ities into a uniform one.”” In other words, this metric was
used to evaluate how well predicted probabilities were
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uniformly distributed. Thus, a lower Wasserstein distance
means that the predicted probabilities are relatively better ca-
librated than those of a higher one. Accordingly, we further
evaluated the model’s performance regarding individual pre-
dicted probabilities in addition to the integrative perform-
ance from the confusion matrix.

Results

In this study, we investigated the application of simulation
results from whole-brain dynamical models to Parkinson’s
disease classification using relationships between empirical
and simulated connectomes as features. The whole-brain dy-
namical model of the Jansen—Rit type was used to simulate
the electrical neuronal activity and was validated against em-
pirical data by means of neuroimaging or behavioural model
fitting. Accordingly, we calculated the connectome relation-
ships involving the simulated connectomes corresponding to
the optimal model parameters of the two fitting modalities
and used them as features for Parkinson’s disease classifica-
tion. We show that complementing the empirical data by si-
mulated data improves the prediction performance as
compared with the case where only empirical data were used.

We calculated sFC using simulated BOLD signals for each
parameter point and obtained the similarity (Pearson’s cor-
relation) values between eFC and sFC. Figure 3 shows the
corresponding landscapes of the GoF values in the delay-
coupling (tgopa, C) parameter space averaged over all
subjects, the distributions of the maximal GoF values and
corresponding optimal model parameters for individual sub-
jects for the Schaefer atlas (Fig. 3A-D) and the Desikan—
Killiany atlas (Fig. 3E-H). We calculated eFC and sFC for
the different frequency ranges of the corresponding filtered
BOLD signals, i.e. NF, BF, LF and HF conditions (see
Materials and methods for details). The profiles of the par-
ameter landscapes were different between the considered
brain atlases. The Schaefer atlas showed a unimodal distri-
bution containing maximal GoF values (the dashed circle
in Fig. 3A) for the optimal global delays in the biologically
feasible range’® from 0.06 to 0.25 s/m (Fig. 3D). On the
other hand, the maximal GoF for the Desikan—Killiany atlas
posited a bi-modal distribution (the dashed circles in Fig. 3E)
with well-separated peaks along the global coupling param-
eter (Fig. 3G, compare with Fig. 3C). Moreover, stronger
global coupling of the maximal GoF values was accompan-
ied by a widespread global delay (the upper dashed circle
in Fig. 3E) that may get out of the biologically feasible range
as compared with the weaker global couplings (the lower
dashed circle in Fig. 3E).

Furthermore, we observed that applying temporal filtering
to BOLD signals diminished GoF values over the entire par-
ameter landscape (Fig. 3B and F). In particular, the narrow
frequency bands (LF and HF) resulted in significantly lower

K. Jung et al.

maximal GoF values than in the cases of the broader (BF) or
entire frequency (NF) range; see Table 3 for statistical
results.

The behavioural model fitting resulted in effect sizes of group
difference between HC and Parkinson’s disease (Fig. 4A-B
for eFC-sFC correlation, see Supplementary Fig. 3 for
eSC-sFC correlation). Furthermore, we also observed that
the distributions of the optimal parameter points corre-
sponding to the maximal effect sizes are densely concen-
trated in the parameter space across repeated subsampling
(1000 times) and filtering conditions (Fig. 4C-D, distribu-
tions in blue). Interestingly, the distributions of the optimal
parameters derived from the behavioural model fitting
were strikingly different from those determined by the neu-
roimaging model fitting (Fig. 4C-D, distributions in orange
for the neuroimaging and in blue for the behavioural fitting).
Both sets of optimal parameters are located in the biological-
ly plausible range of time delay.”®

The empirical structure-function relationships corr(eFC,
eSC) for HC and Parkinson’s disease subject groups were
found to be from distributions with different medians for
the Schaefer atlas and all considered filtering conditions
and for the LF condition only for the Desikan—Killiany atlas
(Fig. 5, the first row). The group differences obtained by in-
volving the simulated connectomes in the neuroimaging
model fitting were small and non-significant for both atlases
and all filtering conditions (Fig. 5, the second and third
rows). On the other hand, for behavioural model fitting,
we observed that Parkinson’s disease patients exhibited
stronger agreements between empirical and simulated con-
nectomes than HC subjects and can thus be better differen-
tiated from HC (Fig. 3, the fourth and fifth rows).
Temporal filtering may influence the group differences for
the empirical and also for the simulated connectomes as illu-
strated in Fig. 5, see the first row for the Desikan—Killiany at-
las, in particular and Supplementary Fig. 4. In addition, we
calculated the explained variances of the five connectivity re-
lationships between each other for the same and different fil-
tering conditions, which resulted in relatively low similarities
for the simulated results (Supplementary Fig. 3).
Accordingly, the temporal filtering can influence the consid-
ered connectivity relationships and may lead to dissimilar
patterns of connectome relationships across subjects.

We used the five whole-brain connectivity relationships as
features for Parkinson’s disease classification using machine
learning based on the logistic LASSO regression algorithm.
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Figure 3 Results of the neuroimaging model fitting. (A-D) The Schaefer atlas and (E-H) the Desikan—Killiany atlas. (A, E) Parameter
landscapes of the similarity (Pearson’s correlation) between eFC and sFC, i.e. goodness-of-fit (GoF) values averaged over the entire subject
cohort. The landscapes are illustrated for each filtering condition (NF, BF, LF and HF, see Materials and methods for details). The dashed circles
delineate the hills with large GoF values. Distributions of (B, F) the maximal GoF values, (C, G) optimal coupling parameters and (D, H) the
respective optimal delays corresponding to the maximal GoF values for each filtering condition. The distributions of the maximal GoF values are
significantly different across filtering conditions (P=0.000 for the Schaefer atlas and P=0.000 for the Desikan—Killiany atlas; Kruskal-WVallis
non-parametric one-way analysis of variance test). Post-hoc: Significantly different filtering conditions are NF > BF, NF > LF, NF > HF, BF > LF and
BF > HF in both atlas conditions (Wilcoxon signed-rank two-tail test, Bonferroni corrected P < 0.05, see Table 3 for details). The distributions of
the optimal coupling parameters are not significantly different (P=0.317 for the Schaefer atlas and P=0.505 for the Desikan—Killiany atlas; the
Kruskal-Wallis test). The distributions of the optimal delays are not significantly different (P=0.459 for the Schaefer atlas and P=0.824 for the
Desikan—Killiany atlas; the Kruskal-WVallis test). The dashed horizontal lines in plots (D, H) indicate the biologically feasible delay range regarding
the electrophysiological conduction speed. The middle lines in interquartile box plots indicate the medians of distributions, and the red plus signs

are the outliers.

The feature space constituted three feature conditions with
ten features (five connectivity relationships for two atlases),
see Supplementary Fig. 2. After the nested CV, the trained
best models were relatively well balanced, with a slight ten-
dency towards overfitting for some of the used performance
measures (13.4% decreased balanced accuracy and 1.1% de-
creased AUC of test performance from training one, see
Supplementary Fig. 6).

Figure 6 shows the prediction performance for each of the
investigated conditional cases of brain parcellations, fre-
quency bands and feature conditions. The first important ob-
servation is that involvement of the simulated connectomes
can improve the classification of Parkinson’s disease and
HC, see Fig. 6 and compare blue dots (empirical features)
to red dots (simulated features) and to yellow dots (all fea-
tures) (see Supplementary Fig. 7 for the differences). In the
latter case, where the empirical features are complemented
by the simulated ones, the prediction performance can only
be enhanced as compared with purely empirical features,
which we observed for most feature conditions and perform-
ance measures (Fig. 6A-C). Interestingly, the performance
further improved when using features from both atlases
(Fig. 6 and Supplementary Fig. 7).

We also investigated how the prediction performance var-
ies depending on the filtering conditions (Fig. 6D). The effect
of the temporal filtering was prominent of the empirical fea-
tures for the Schaefer atlas, where the performance was sig-
nificantly increased for the LF condition compared with the

others (Fig. 6D, the ‘Emp.’ column for the Schaefer atlas). On
the other hand, the HF condition showed low performances
on the empirical features, in particular, with very low speci-
ficities down to zero (Fig. 6B and D) and very high sensitiv-
ities up to 1 (Supplementary Fig. 8), where the LF filtering
seems again to be a beneficial condition for Parkinson’s dis-
ease prediction. Summarizing, the temporal filtering condi-
tions influenced the model performance and the LF
band-pass filtering resulted in the most effective prediction
relying on the connectome relationships. The other consid-
ered narrow-band HF filtering condition is not advisable
for Parkinson’s disease classification. However, involving
the simulated connectomes is still of advantage also under
this condition as compared with using only empirical
features.

We also compared the prediction performance when the
simulated connectomes obtained from the neuroimaging
and behavioural model fittings were considered separately.
This resulted in two additional feature conditions (see
Supplementary Fig. 8). The neuroimaging model fitting in
most cases led to a weaker prediction performance compared
with the behavioural model fitting or to the composite case
when the features of both fittings are merged. This justifies
the introduction of the behavioural model fitting for subject
classification.

Furthermore, we applied the current approach to the ba-
lanced subject configuration (99 subjects, see Supplementary
Table 1 for the demography). The prediction performance
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Figure 4 Parameter maps of the effect size of the difference between goodness-of-fit (GoF) values (eFC-sFC correlation) of
healthy and Parkinsonian groups used for the behavioural model fitting. The filtering conditions are indicated in the plots for (A) the
Schaefer atlas and (B) the Desikan—Killiany atlas. Effect sizes in the (zgopa, C)-parameter plane were calculated by a non-parametric Wilcoxon

rank-sum two-tailed test between patients and controls in the GoF values for each parameter point. (C, D) Distributions of optimal parameters
derived from the neuroimaging model fitting (orange, all subjects, n = | 1 6) and the behavioural model fitting (blue, repeated subsampling, n = 1000)

for (C) the Schaefer atlas and (D) the Desikan—Killiany atlas.
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Figure 5 Differentiation between healthy and Parkinsonian subjects as reflected by the relationships between empirical and
simulated connectomes. (Left) The Schaefer atlas and (Right) the Desikan—Killiany atlas. The simulated connectomes are calculated for the
optimal model parameters of the neuroimaging and behavioural model fitting as indicated on the vertical axis. Summary tables of the effect sizes
(numbers) of the differences between Parkinsonian and healthy subject groups are calculated by the Rosenthal formula and shown in negative for
HC < Parkinson’s disease and positive for HC > Parkinson’s disease. The significant cases are indicated by rectangles as given by the Bonferroni

corrected P-values of the Wilcoxon rank-sum two-tail test.

was consistent with the main findings of the entire cohort (116
subjects, Fig. 6). In other words, complementing empirical
data with simulated results using LF filtering involving multi-
parcellation (concatenating both atlases) is advisable for
Parkinson’s disease classification (Supplementary Fig. 9).
Figure 6 shows the well-known measures characterizing
the prediction performance as median values and interquar-
tile ranges of distributions. Although these measures clearly
reflect how well the machine learning approach is commonly
working, we may also be interested in how every test is per-
forming for the classification of individual unseen subjects.
In this respect, Fig. 7 illustrates the results of classification/
prediction probabilities of all tests performed on individual

subjects from the test sets. The prediction probabilities
were collected and related to the probability calibration
curves.

We can interpret the probability calibration plots
(Fig. 7A-C) according to two aspects. Feature conditions
using simulated results (red and yellow curves) resulted in
predictions that are more closely aligned with the ideal
case (the diagonal black line) than the empirical relationship.
Indeed, for the Schaefer atlas and the multi-parcellation case,
the distance to the diagonal as given by the mean-squared er-
ror of the predicted probabilities against the actual classes
calculated according to the Brier score’® is minimal for the
composed features, including the empirical and simulated
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Figure 6 Summary of the performance of Parkinson’s disease classification using the three different feature conditions:
empirical features (left distribution), simulated features (middle distribution) and all features (right distribution) after incorporating the age
controlling and the behavioural model fitting during the nested CV (Fig. 2). The median values of the balanced accuracy, specificity and AUC of the
ROC curves for all considered parcellations and filtering conditions are shown in each panel for (A) balanced accuracy and (B) specificity and (C)
AUC. The error bars indicate the interquartile range of 250 tests represented as data points in the plots across 50 iterations of the outer loop
(5-fold) of the nested CV procedure (Fig. 2). The horizontal brackets connecting two coloured distributions indicate significantly different
performance between feature conditions (Bonferroni corrected P < 0.05; Wilcoxon signed-rank two-tail test). (D) Effect sizes between filtering
conditions for each feature condition. The signs ‘<’ and *>’ indicate which condition is significantly larger than the other. For example, ‘<’ sign for
‘NF-LF’ indicated on the vertical axes means NF < LF for a given feature condition indicated on the horizontal axes. The Wilcoxon signed-rank
two-tail test was used for comparisons across feature and filtering conditions (Bonferroni corrected statistics). The Desikan—Killiany atlas is

shortend as ‘Desikan’.

connectomes for the LF filtering condition (Fig. 7E). As a se-
cond aspect, the prediction probabilities derived from the
empirical features are more narrowly distributed around
0.5 (blue curves in Fig. 7D) compared with the case of all fea-
tures (yellow curves in Fig. 7D). This can be quantified by the
minimum cost of turning the observed distribution into a
uniform distribution using the Wasserstein distance’’
(Fig. 7F). In the latter case, the predicted probabilities de-
rived from all features show widely spreading distribution
that also reach the low and high probability values, which in-
dicates high confidence.” In other words, in our predictive
modelling, the prediction results, where the empirical data
were complemented by simulated features, were better cali-
brated in some cases as compared with the case of the empir-
ical data only (Fig. 7C). As mentioned above, the
Wasserstein distance in Fig. 7F clearly shows which filtering
condition and which feature condition can be the best bene-
ficial configuration for Parkinson’s disease classification. In
particular, the LF filtering of the BOLD signals and involving
of the simulated connectomes together with the empirical
ones for the Schaefer atlas and multi-parcellation case can
improve the prediction results and the confidence of the pre-
diction model. The same conclusion was drawn above based
on the Brier scores, which confirm their robustness and may
be relevant for the application of the discussed modelling and
prediction approaches to clinical data and disease diagnosis.

Discussion

The main objective of this study is to effectively apply whole-
brain dynamical modelling and the derived simulated connec-
tomes to Parkinson’s disease classification. Whole-brain simu-
lations allow us to explore various regimes of brain dynamics
corresponding to different values of free model parameters.
To extract features from the simulated results, it is essential
to evaluate which model fitting is appropriate. The detected
optimal model parameters can differ when we use different
model fitting approaches. In other words, whole-brain dy-
namics with proper model parameters can disclose group dif-
ferences between Parkinson’s disease and HC subjects and
provide a way to extract effective features for Parkinson’s dis-
ease classification. In this study, we introduced the behaviour-
al model fitting approach and showed that it captured
differences between Parkinson’s disease and HC better than
the conventionally used neuroimaging model fitting ap-
proach. Then, we applied it to Parkinson’s disease classifica-
tion. Based on our findings, we can conclude that using
proper model validation in whole-brain dynamical modelling
may provide effective features to machine learning and pro-
vide information complementary to empirical features.

In addition to whole-brain dynamical modelling for classi-
fication, data processing is also important because, as we
have shown, different data processing influences model
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Table 3 Comparisons between goodness-of-fit values of the considered filtering conditions (Bonferroni corrected
P-values of the Wilcoxon signed-rank two-tail test) and the corresponding effect sizes by Rosenthal formula®'

P (effect size) NF versus BF NF versus LF

NF versus HF

BF versus LF BF versus HF LF versus HF

Schaefer 0.000 (0.70) 0.000 (0.84) 0.000 (0.86) 0.000 (0.81) 0.000 (0.70) 0.998 (0.04)
Desikan—Killiany 0.000 (0.66) 0.000 (0.77) 0.000 (0.85) 0.000 (0.69) 0.000 (0.70) 0.838 (0.10)
Bold fonts indicate that the goodness-of-fit values are significantly different between filtering conditions.
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Figure 7 Performance of the trained prediction model regarding the predicted probabilities for individual subjects. (Top row)
Plots of the probability calibrations from 5800 predictions for (A) the Schaefer atlas, (B) Desikan—Killiany atlas, and (C) multiple atlases, where the
fraction of true positives is plotted versus the probability of them predicted by the trained model for individual subjects. The sizes of the circles
indicate the number of individual subject tests for the three considered feature conditions as indicated in the legend in plot (A). (D) Histograms of
the predicted probabilities (5800 predictions) for each feature condition, as indicated in the legend. The case of the LF band-pass filtering condition
is illustrated in plots (A—D). (E) Table of the Brier scores (mean-squared error to the correct classes) for all considered filtering and feature
conditions. (F) Tables of the Wasserstein distances between distributions of predicted probabilities and a uniform distribution for all conditions.
Desikan, Desikan—Killiany; Emp., empirical features; Sim., simulated features; All, empirical and simulated features.

validation.®*%3>”? In this respect, we investigated how tem-
poral filtering of BOLD signals and brain parcellation influ-
ence empirical and simulated results regarding model fitting,
group difference and prediction performance. Based on our
results, we can conclude that the resting-state whole-brain si-
mulations with appropriate data processing and model valid-
ation reflect personal traits of individual subjects, which may
contribute to disease classification based on the whole-brain
connectivity relationships with potential relevance in
medicine.

Effect of temporal filtering on model
fitting and prediction

The effect of temporal filtering on functional MRI has been
the focus of neuroimaging research for a long time.5™%3
One related study considered different temporal filters for
MRI data processing and reported distinguishable BOLD
dynamics in task-driven and resting-state brain activity

between low and high-frequency band-pass filtering.®
Furthermore, temporal filtering can influence the classifica-
tion performance for patients with Alzheimer’s disease as
compared across several low- and high-band-pass filtering
conditions.?® In this study, we found that the neuroimaging
model fitting resulted in significantly different distributions
of the maximal GoF values for individual subjects under dif-
ferent filtering conditions. Furthermore, the empirical
structure-function connectivity relationship and the max-
imal GoF values of the neuroimaging model fitting were di-
minishing for the narrower filtering bands (Supplementary
Fig. 4).

Another study investigated Parkinson’s disease classifica-
tion via machine learning on brain networks derived from
the empirical resting-state FC with a high pass temporal fil-
tering (> 0.01 Hz) of BOLD signals,*® which corresponds
to the case of the NF condition in our study. According to
our prediction results, we suggest to consider the low-
frequency band-pass filtering, i.e. the LF condition, which
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can improve the differentiation and classification of
Parkinson’s disease also for the case when only empirical fea-
tures are used.

An appropriate selection of the filtering condition (broad-
or narrow-, high- or low-frequency band) appears to be
important for the prediction performance, as reflected by
several integrative measures considered in this study. In par-
ticular, a detailed evaluation of individual tests indicates that
selecting a proper band-pass filter for the empirical and simu-
lated BOLD signals can improve the prediction performance
(Figs. 6 and 7).

In a broader perspective, changing parameter values or al-
gorithms in a data processing pipeline can affect empirical re-
sults such as structural and functional connectivities, which
in turn influence simulation results. In previous studies,
for instance, we reported the impact of data processing
on simulated results by whole-brain dynamical modelling:
WBT densities,® region granularities,® parcellation
schemes,®>%”?%% whole-brain simulation models®’*** and
model fitting approaches.®?° In the current study, we
showed that applying temporal filtering to BOLD signals
and using different brain parcellations and their combina-
tions, as well as the neuroimaging and behavioural types of
model fitting, can impact empirical and simulated results
and their classification performance. Subsequently, we there-
fore investigated the impact of the considered parameter con-
ditions of the data processing and model simulation on
classification performance. By doing so, the conditional pipe-
line, which gives the highest performance, can be considered
as contributing to the extent of the data and model personal-
ization, which is important for subject classification based on
clinical or behavioural data and their simulations.

Under the assumption that the resting-state brain activity is
governed by a complex dynamical system, we can interpret
the optimal model parameters of the neuroimaging model fit-
ting as parameters of that system with potential neuroscien-
tific/physical meaning. Since the optimal parameters were
determined by distinct model validations, they can differ
when a given model fitting approach changes as observed
in our previous studies®*° and demonstrated by the results
in the current study (Fig. 4C-D). Furthermore, the parcella-
tions also impact on the locations of the optimal parameters.
For instance, the optimal global coupling parameters derived
from the behavioural model fitting suggest weaker optimal
couplings than those from the neuroimaging model fitting
for the Schaefer atlas (Fig. 4C). On the other hand, the situ-
ation for the Desikan—Killiany atlas is opposite (Fig. 4D).
In our model, we used the reconstructed PLs of the tracto-
graphy streamlines in the white matter, which approximate
the actual lengths of the anatomical axonal connections in
the brain. The considered model simulates the electrical ac-
tivity of the excitatory and inhibitory neuronal populations
in the brain regions, as reflected by the dynamics of the
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respective PSP signals. We can thus evaluate and interpret
the optimal model parameters for the propagation of the si-
mulated electrical signals (EPSP) along the brain pathways.
We, in particular, found that the neuroimaging model fitting
resulted in the optimal delay of the signal propagation in the
electrophysiologically plausible range”® (Fig. 3D and H).
This confirms the applicability of the used dynamical model
for simulating brain dynamics. Furthermore, the optimal de-
lay of the behavioural model fitting obtained from repeated
subsampling for different subject configurations is located
in the same biologically reasonable range as well, which va-
lidates the behavioural model fit (Fig. 4C-D). Further para-
meters of the considered model and the simulated electrical
PSP signals (Table 2) may have biologically plausible inter-
pretations and ranges. Here we may mention, for example,
the excitation-inhibition balance of the intra-regional coup-
ling or the time constants responsible for controlling slow or
fast oscillations of electrical neuronal activity.

In Parkinson’s disease research, a neural model generating
such oscillations in a certain frequency range is essential to
engaging the pathological neural activity during rest.
Previous studies reported that the resting-state cortico-
cortical FC of Parkinson’s disease patients changed in the
8-10 Hz range (in the alpha-rhythm) for early-stage and
moderately advanced Parkinson’s disease patients® and
cortico-cortical coupling for oscillations between 10
and 35 Hz correlated with the severity of Parkinson’s disease
in the electroencephalogram study.®® High oscillatory syn-
chrony in the basal ganglia at frequencies of 8-35 Hz was
also associated with Parkinson’s disease based on spectral
power changes between off- and on-drug (levodopa
dose).®” With this respect, we may also investigate the rela-
tionship between frequencies of neural activity and models
by varying the scale factor R of the current whole-brain dy-
namical model.

The neuroimaging model fitting is a well-established model
validation as though maximizing GoF values of the model
is the main objective of the model validation. Nevertheless,
brain dynamics for non-optimal model parameters may
also provide additional useful properties. They can contrib-
ute to the application of the dynamical models to analyse
the brain and behaviour. In particular, brain modelling
with virtual brains or iz silico models for brain abnormalities
has been used for clinical purposes.>*™>® To this end, we ex-
plored the parameter landscapes of GoF values and searched
for parameter points that provide optimal GoF values to ef-
fectively answer the current research question. As we re-
ported in the results, there exist hotspots of the densely
located optimal model parameters, where either neuroima-
ging or behavioural model fitting is the most effective, al-
though these hotspots may not coincide (Fig. 4C-D, the
distributions in blue and orange). This should be linked to
the definition of the atlas and, hence, regions. We also ob-
served an impact of brain parcellations on the distributions
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of the optimal parameters.®>%"?%% A detailed investigation
of this phenomenon will require considering more parcella-
tion schemes to systematically describe their influence on
the modelling results, as we already initiated in our previous
studies.®?%7?8% Therefore, a systematic exploration of par-
ameter landscapes allows us to find proper model parameters
for a given purpose, which may be different in locations and
other properties from one modelling condition and research
question to another. Accordingly, we conclude that explor-
ing parameter landscapes of the whole-brain dynamical
models using behavioural/phenotypical measures might re-
veal optimal model parameters best suited for research goals
related to inter-individual wvariability and prediction
approaches.

In this study, we did not aim at obtaining the highest pre-
diction accuracy, which might have required extensive
testing of many simulation and prediction conditions, fea-
ture spaces, and learning algorithms. Nevertheless, the ob-
tained prediction performance (65.2% as median accuracy
using empirical features) is comparable with that reported,
for example, in the study of Plaschke et al.>® which had
a median accuracy of 65.5% over considered brain
networks.

When we considered the simulated data for Parkinson’s
disease classification, the features from the neuroimaging
model fitting had much lower performance in most consid-
ered cases as compared with the features from the behaviour-
al model fitting (Supplementary Fig. 8). Therefore, we
suggest that the behavioural model fitting can be used to val-
idate the model against behavioural data for probing the si-
mulated whole-brain dynamics to improve the model
correspondence to phenotypical characteristics of subjects
and prediction results. Such an approach may be of crucial
importance in clinical research and the reported results
showed promising confirmations.

In this study, we also explored the impact of a few data
processing choices and model simulation on the differenti-
ation and prediction performance. For example, composing
predictive features including empirical and simulated con-
nectomes from multiple brain atlases can provide comple-
mentary features leading to even better prediction
performance (Supplementary Fig. 7). We further showed
that also filtering conditions of empirical and simulated
BOLD signals can play an important role in model validation
and subject classification, where in particular, prediction
specificity may vary significantly across filtering conditions
as well as the number of false positives of the trained model
can be reduced by appropriate filtering (Fig. 6).

Modern neuroimaging research dedicated to prediction
analysis and based on machine learning techniques has
shown enhanced performance for clinical data and in radi-
ology in particular.®”*® Those predictive results and devel-
oped approaches have faced the issue of translation of their
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analysis and interpretation of the obtained outcomes to clin-
ical application.?” In this respect, the current study illu-
strated the characteristics of individual prediction
probabilities to bridge the gap between modelling and pre-
diction results and their translation for diagnosis in clinical
research. The analysis included in the present study explored
the calibration of the predicted probabilities for individual
subjects and provided additional reliable information for
the interpretation of the classification results. This can be
achieved when the prediction probabilities are considered
at the level of individual subjects, for example, when new,
unseen patients are tested for diagnostic purposes.
Furthermore, the discussed probability analysis delivered
additional evidence that the whole-brain simulation results
can be useful for complementing empirical data for predic-
tion and classification in clinical research. Consequently, in-
volving the whole-brain dynamical models in the training of
machine learning models can improve individual prediction,
which can potentially help a clinician better gauge a diagno-
sis during the examination of individual patients.

For further studies, other phenotypical properties can be
used for the behavioural model fitting, for instance, age or
sex. Of course, cognitive or clinical scores such as the
Montreal Cognitive Assessment, Mattis dementia rating
scales and the unified Parkinson’s disease rating scales are
also applicable. The suggested approach to behavioural
model fitting is similar to the brain mapping of various be-
havioural or phenotypic measures on the cortical surface
and can thus be generalized. In other words, we can map
the parameter space using cognitive or clinical scores, which
can be referred to as phenotypical mapping on the model
parameter space like the behavioural model fitting that we
introduced in the present study.

Summary

We simulated whole-brain resting-state dynamics and calcu-
lated the relationships between structural and functional em-
pirical and simulated connectomes for a variety of conditions
and data processing, options including brain parcellation
and temporal filtering of BOLD signals. We introduced the
behavioural model fitting paradigm and found that the ensu-
ing modelling results can lead to enhanced differentiation of
disease and control groups and improved classification of
Parkinsonian patients by machine learning approaches.
Thus, the involvement of simulated connectomes, especially,
in combination with empirical ones, is of great advantage,
where the individual probabilities approach the ideal case
as compared with the purely empirical feature space. We
showed that band-pass filtering in the low-frequency band
can have a beneficial effect on the prediction performance.
On the other hand, the high-frequencies of the empirical
and simulated BOLD signals should be considered with care
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and may not immediately be recommended for subject-level
classification. In addition, we demonstrated that the predic-
tion performance can differ for different or multiple brain par-
cellation schemes. Our findings can contribute to a better
understanding of empirical and simulated whole-brain dy-
namics and their relationship to disease. They further suggest
an avenue for application of the results of whole-brain simu-
lations for cognitive or clinical investigation of inter-
individual differences and disease diagnosis.
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Supplementary material

Simulated BOLD signals

The neurovascular coupling describes that the changes of the induced signals s(t) driven by
the EPSP input link to the changes in the cerebral blood flows (CBF) f(t) as the blood inflow

5(6) = —ks(t) = y(F(£) — 1) + 22252 (1)

f@®) = s(@. @)

Equations 1 and 2 govern the dynamics of the induced signal and CBF, respectively.
Parameters k and y are the rate constants that regulate ultra-slow endogenous fluctuations at
around 0.09 Hz.! The normalized neural response, i.e., ygpsp(t) divided by the amplitude A of
the parameter in the electrical model, drives the induced slow fluctuation. Consequently, CBF
signals simultaneously influence the changes of the cerebral blood volume (CBV) v(t) and
deoxyhemoglobin content (DOH) q(t) as described by the following equations:

2(6) = == [f(O) = foue @, O], ®3)
40 = = [fO 52 ~ fou D L3 )

The mean transit time ¢, scales both differential equations for passing a bolus of the blood
through the vein. To estimate CBV changes, Equation 3 models a difference between the blood
inflow f(t) and the blood outflow f,,;(v,t). Subsequently, we can calculate the changes of
DOH using the dynamics of CBF and CBV by regarding oxygen extraction fraction E(f) in
Equation 4. Parameter E, is the net oxygen extraction fraction at rest,

fout(v) = vl/a’ (5)
E(f)=1—(1—E)Y'. (6)

Equation 5 provides the relationship between CBF and CBV, where Grubb et al.2 empirically
found a is 0.38. Equation 6 is a non-linear function of CBF, and describes an effect of CBF on
the oxygen extraction fraction, see the reference? for details. Using CBV and DOH, we can
calculate simulated BOLD signals yzo.p:

Ysorp = Vo [k1(1 —q) tk, (1 - %) + k3(1— v)], (7

where V; is the resting blood volume fraction, and parameters k,, k,, and k5 depend on the
magnetic field strength as follows:

k1:4’.3'190'E0'TE, k2=£'T0'E0'TE, k3:1_g. (8)

Parameters 9,, TE, €, and r, are the frequency offset for 3 T scanner, the echo time, the ratio
of intra/extra-vascular signal, and the sensitivity of changes in intra-vascular signal relaxation
rate with changes in oxygen saturation, respectively.* The parameter values of the BW model
for BOLD signals are given in Table 2.
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Supplementary Figure 1. Examples of (A, C) time courses of the simulated excitatory post-synaptic potentials (EPSP) and
(B, D) their spectral power distributions of a few brain regions for (A, B) isolated (global coupling = 0) and (C, D) coupled
cases for the Schaefer atlas. In the latter case, global coupling = 45 and global delay = 0.2 are the optimal model parameters
of the neuroimaging model fitting. The peaks of the maximal spectral power for the isolated regions in (B) are around 13 Hz.
The dotted horizontal lines in (C) indicate the maximum EPSP (3.25 mV), which is the specified value as the maximal EPSP
kernel in Table 2.
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Supplementary Figure 2. Features and feature conditions used for PD classification. Ten connectivity relationships listed in
the plot were used during machine-learning training and testing for PD classification as features. To investigate the impact of
simulated results on the prediction performance, we considered 9 feature conditions as illustrated in the right part of the plot.
Here, a few features of interest were selected (green bars), while the other features were randomly shuffled across subjects
(gray bars). Shuffling is done for each feature separately, i.e., shuffling within a feature gives the same distribution of the
values but randomized feature values across subjects, which destroys the correspondence between the (brain) feature and
behavioral labels (PD or HC). The shuffled feature is supposed to not contribute to classification performance, but we always
keep the same number (ten) of features in all feature conditions of the machine-learning experiments. Abbreviations: FC =
functional connectivity; PD = Parkinson’s disease; SC = streamline count.
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Supplementary Figure 3. Parameter maps of the effect size of the difference of eSC-sFC correlation values between PD and
HC subject groups used for the behavioral model fitting. The filtering conditions are indicated in the plots for (A) the Schaefer
atlas and (B) the Desikan-Killiany atlas. Effect sizes in the (z4;05q:, C)-parameter plane were calculated by a non-parametric
Wilcoxon rank-sum two-tailed test between HC and PD subject groups in the eSC-sFC correlation values for each parameter
point. (C, D) Distributions of optimal parameters derived from the neuroimaging model fitting (orange, all subjects, n=116)
and the behavioral model fitting (blue, repeated sub-sampling, n=1000) for (C) the Schaefer atlas and (D) the Desikan-Killiany
atlas. Abbreviations: PD = Parkinson’s disease; HC = healthy controls; NF = no filtering; BF = broad band ([0.01,0.1] Hz);
LF = low-frequency band ([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] Hz).
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Supplementary Figure 4. Comparison of connectivity correspondences between HC and PD subject groups as reflected by
the connectivity relationships of empirical and simulated results for (A-E) the Schaefer atlas and (F-J) the Desikan-Killiany
atlas for (A, F) the empirical structure-function relationship (eFC vs. eSC), (B, C, G, H) functional (eFC vs. sFC) and structure-
function (eSC vs. sFC) relationships for the neuroimaging model fitting, and (D, E, I, J) connectome relationships (eFC vs.
SFC and eSC vs. sFC) for the behavioral model fitting. Abbreviations: NF = no filtering; BF = broad band ([0.01,0.1] Hz); LF
= low-frequency band ([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] Hz); FC = functional connectivity; SC =
streamline count.
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Supplementary Figure 5. Explained variances (EV, squared correlation r?) between five connectivity relationships for (A)
the Schaefer atlas and (B) the Desikan-Killiany atlas. The five connectivity relationships are corr(eSC, eFC) (empirical),
corr(eFC, sFC) (neuroimaging), corr(eSC, sFC) (neuroimaging), corr(eFC, sFC) (behavioral), and corr(eSC, sFC) (behavioral).
Due to the four considered temporal filtering conditions of NF, BF, LF, and HF indicated in the plots, the intra-/inter-condition
EVs were obtained using 20 connectivity relationships (see the axes). The green boxes are for the same types of connectivity
relationships under different filtering conditions. Abbreviations: NF = no filtering; BF = broad band ([0.01,0.1] Hz); LF = low-
frequency band ([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] Hz).

A Schaefer B Desikan c Schaefer+Desikan
Training - Test Training - Test Training - Test
1 1 1f
Underfitting Overfitting Underfitting Overfitting Underfitting Overfitting
0.5 0.5 0.5/
o Balanced accuracy | o Balanced accuracy - o Balanced accuracy
1 17 17
05 |IIIII||, 05" IIII 05 iIIII
Accurac Accura Accura
0 24 . ° cy 0 cy

0.5

0.5

. snec.'f-c"v_,...nlllllllln.._ _

AUC __II“II

1t

05
o Specifiolty _._..nIIIII:.._. ||

1r

0.5
Auc

-1 -08 06 04 -02 0 02 04 06 08
Difference

1

-1 08 06 -04-02 0 02 04 06 08
Difference

o

1

1}

0.5
, Specifiity ___..nilllllln._ .
0.5

1

-1 -08 -06 -04 02 0 02 04 06 08
Difference

1

Supplementary Figure 6. Differences of model performance between training and test sets (Training — Test) for PD prediction
including all filtering conditions and all features for the (A) Schaefer atlas, (B) Desikan-Killiany atlas, and (C) multiple atlases,
i.e., the Schaefer and Desikan-Killiany atlases. The considered performance measures are indicated in the plots. The green
vertical lines indicate zero differences. The positive differences are overfitting cases, and the negative ones are underfitting.

Abbreviation: AUC = area-under-curve.
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Supplementary Figure 7. Comparisons of the prediction performance between the feature conditions used for the subject
classification, see Supplementary Figure 2. The differences in the performance measures are illustrated as box plots for (A-C)

“All features” versus “Empirical features” (All -

Empirical) for the Schaefer, Desikan-Killiany, and multiple (Schaefer and

Desikan-Killiany) atlases as indicated on the top of the plot (A) and for (D-F) “All features” for the multiple atlases versus
“All features” for single atlases (All(multiple) — All (single)) as indicated on top of plot (D). The performance measures are
(A, D) balanced accuracy, (B, E) specificity, and (C, F) AUC of ROC curves. The filtering conditions are given on the
horizontal axes. The purple boxes depict significantly different performance (Wilcoxon signed-rank two-tail test and

Bonferroni corrected p < .05). Abbreviations: NF = no filtering; BF = broad band ([0.01,0.1] Hz); LF =

([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1] Hz).
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Supplementary Figure 8. Prediction performance as given by the balanced accuracy, accuracy, specificity, sensitivity, and
AUC of ROC curves using optimal simulated connectomes (corresponding to the optimal model parameters) from the
behavioral fitting only (purple) and from the neuroimaging fitting only (green) as additional feature conditions to those
presented in Supplementary Figure 2 (also depicted here for comparison, see the legend). The error bars indicate interquartile
ranges, and the heights of bars are the medians. The filtering conditions are indicated in the plots. Abbreviations: NF = no
filtering; BF = broad band ([0.01,0.1] Hz); LF = low-frequency band ([0.01,0.05] Hz); HF = high-frequency band ([0.05,0.1]
Hz); SCH = Schaefer; DK = Desikan-Killiany, Emp. = Empirical features, Sim. = Simulated features, All = All features, Neuro.
= Simulated features from the neuroimaging model fitting only, and Behav. = Simulated features from the behavioral model

fitting only.
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Supplementary Figure 9. Summary of the performance of PD classification using the three different feature conditions:
empirical features (blue bars), simulated features (red bars), and all features (yellow bars) for the balanced subject
configuration (n=99, Supplementary Table 1) controlled for the balanced age and sex and size of subject groups (HC versus
PD). (A) Median values of the balanced accuracy, accuracy, sensitivity, specificity and area-under-curve (AUC) of the receiver
operating characteristics (ROC) curves for all considered parcellations and filtering conditions are shown in each panel. The
error bars indicate the interquartile range across iterations of the outer loop of the nested cross-validation procedure (see Fig.
2 in the main text). The black lines connecting two conditions indicate significantly different performance between feature
conditions. (B) Effect sizes between filtering conditions for each feature condition. The signs ‘<’ and ‘>’ indicate which
condition is significantly larger than the other. For example, ‘<’ sign for ‘NF-LF’ indicated on the vertical axes means NF <
LF for a given performance indicated on the horizontal axes. The Wilcoxon signed-rank two-tail test was used for comparisons
across feature and filtering conditions (Bonferroni corrected statistics). Abbreviations: PD = Parkinson’s disease; NF = no
filtering; BF = broad band ([0.01,0.1] Hz); LF = low-frequency band ([0.01,0.05] Hz; HF = high-frequency band ([0.05,0.1]
Hz).

Supplementary Table | Demography of a balanced subject configuration (excluding 17 oldest patients from 116 subjects).

Groups Mean (standard deviation) years Statistical tests p-values
All subjects Chi-square goodness-of-fit test

All 56.62 (9.24) 99 subjects 0.235
Healthy controls Patients Wilcoxon rank-sum two-tail test

All 55.02 (9.69) 58.31 (8.42) 51 healthy controls versus 48 patients 0.062

Female 56.52 (9.40) 60.80 (8.96) 21| healthy controls versus 20 patients 0.201

Male 53.97 (9.74) 56.54 (7.53) 30 healthy controls versus 28 patients 0.156
Females Males Wilcoxon rank-sum two-tail test

All 58.61 (9.43) 55.21 (8.84) 41 females versus 58 males 0.095
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5 Discussion

The main objective of this dissertation is to delineate and investigate the impact of data
processing on whole-brain dynamical modeling via the systematically planned workflow
illustrated in Fig. 3. From the results of the three studies in this project, the impact on the
modeling involves four aspects: data processing parameters, optimal model parameters,
personalized whole-brain models, and model fitting approaches. Based on these aspects, this
dissertation formulates whole-brain models as a mathematical or biophysical in silico
framework for interacting among brain regions via the whole-brain connectome. Subsequently,
the following sections discuss our findings from the performed studies and address the impact

of data processing on the whole-brain modeling and its applications.
5.1 Impact of data processing

Whole-brain models generate brain dynamics based on empirical data as a backbone of intrinsic
interactions between brain regions. Whole-brain simulation studies, however, have used study-
specific data processing or one from the literature. Due to no consensus pipeline for MRI data
processing, various data processing parameters can affect empirical data. Thus, the effect of
data processing parameters should be carefully tested by systematically prepared experiments.
Otherwise, empirical data and analyzed results can be less reliable, and subsequently, the
corresponding conclusions will be less replicable across studies. Therefore, we performed
simulation experiments with systematically designed conditions based on the current project
workflow and investigated the impact of MRI data processing parameters on the whole-brain

dynamical models.
5.1.1 Impact of structural pipeline on modeling

In study 1, varying WBT density (the number of streamlines in the WBT) affects whole-brain
structural architecture, such as SC and their graph theoretical network properties. As mentioned,
SC is used for whole-brain models, thus using different SCs can affect simulated results. For
instance, previous studies have shown that manipulating SC edges could result in a better fit for

model validation (Cabral et al., 2012; Deco et al., 2014; Proix et al., 2016). Because of many

possible ways of SC variation for the model validation, we should consider data processing
parameters of the structural pipeline on top of state-of-the-art techniques for WBT calculation

(Tournier et al., 2019). For example, average path lengths of streamlines between brain regions

are sensitive to disconnection or re-connection of edges across WBT density conditions rather
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than streamline counts. Therefore, long-range or interhemispheric connections have relatively
small numbers of streamlines and can influence the structural connectome while varying WBT
density. Accordingly, simulated BOLD signals by whole-brain models will differ across applied
structural pipeline conditions. In addition, the simulated FCs calculated by the simulated BOLD

signals from the varied WBT density conditions impact whole-brain dynamical modeling.

In study 1, we suggested that the applicable range of WBT density is 50,000 streamlines as a
sparse one and 2,000,000 streamlines as a dense one. Some of the considered graph-theoretical
network properties are highly sensitive to the varied WBT densities in this range. Therefore,
using different WBT densities can clearly impact model validation because it provides the brain

network architecture serving as a backbone for the modeling of brain dynamics (Cabral et al.

2011; Endo et al., 2019; Honey et al., 2009; Zimmermann et al., 2018). Correspondingly, we

addressed the relationship between graph-theoretical network properties and goodness-of-fit
(GoF, i.e., similarity between empirical and simulated data) values across varied WBT densities.
In addition to the impact of the WBT densities, we applied different parcellation schemes for
the modeling and found that the results have different patterns across the WBT density
conditions when we use different parcellation schemes. Thus, WBT densities and brain
parcellation schemes are intermingled as a mutual impact on the modeling. | will discuss this

in the subsection 5.1.3 later.
5.1.2 Impact of functional pipeline on modeling

Data processing parameters in the functional pipeline influence BOLD signals and, accordingly,

empirical FC will be affected by the different BOLD signals (Caballero-Gaudes and Reynolds,

2017). For instance, signal processing of BOLD signals has been an issue in neuroimaging

research for a long time (Boubela et al., 2013; Friston et al., 2000; Vergara et al., 2017; Zuo et

al., 2010). The literature showed that applying temporal filters with different frequency ranges

influences empirical BOLD signals and FC for healthy subjects (Baria et al., 2011) and patients

(Hou et al., 2014; Wee et al., 2012). In study 3, we also observed that temporal filtering with

different frequency ranges for empirical and simulated BOLD signals influences empirical and
simulated FC and subsequently impacts model fitting results. Based on the correspondence
between empirical and simulated data, we trained a prediction model for classification of
patients with Parkinson’s disease using a machine learning method and observed that the
prediction performances are clearly different across the temporal filtering conditions. So
applying the temporal filtering conditions for BOLD signals influences empirical and simulated

FC simultaneously. Therefore, data processing parameters in the functional pipeline do not only
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affect empirical FC but also impact the results of whole-brain model fitting. In addition to the
impact of the functional processing parameters, we applied two parcellation schemes to whole-
brain dynamical modeling and found that the prediction performances are also different across
parcellation schemes. In consequence, different temporal filtering conditions and brain
parcellation schemes impact the whole-brain dynamical modeling and the patient classification.

I will discuss this in the next subsection.
5.1.3 Impact of parcellation schemes on modeling

As we reviewed brain parcellation schemes in the recent study (Domhof et al., 2021), various

parcellation schemes have been published using different criteria and algorithms, such as

cytoarchitectures regarding cell distribution (Pijnenburg et al., 2021; Scholtens et al., 2018),

structural architectures based on gyri- or sulci-formation in the neocortex (Desikan et al., 2006;

Destrieux et al., 2010; Tzourio-Mazoyer et al., 2002), and functional analyses of resting-state
or task-driven functional MRI (Craddock et al., 2012; Schaefer et al., 2018; Shen et al., 2013;

Urchs et al., 2019). However, choosing an optimal parcellation scheme is still under debate,

and it can be study-dependent in considering research methods and questions.

In study 1, we used two parcellation schemes and found the mutual impact on the model
validation in two factors: WBT densities and parcellation schemes. With the 12 configurations
of conditions (6 WBT densities and 2 parcellation schemes), whole-brain dynamical modeling
resulted in different maximal GoF profiles across WBT density conditions for each parcellation
scheme. One remarkable observation is that the cortical parcellation exhibits differentiable
modeling behavior across subjects, such as subject stratification in study 1 and parcellation-

induced variation at group and subject level summarized by our recent study (Domhof et al.,

2021). Consequently, we infer that individual subjects can have different results of whole-brain

dynamical modeling when disparate brain parcellation schemes are used for data processing.

In study 2, we also used three parcellation schemes with varied region-granularity (the number
of parcels of the neocortex) and region-probability conditions (different region sizes with the
same number of parcels). We observed that using disparate parcellation schemes provides
different results of whole-brain dynamical model fitting because the brain parcellation is used
to calculate empirical FC and SC. In other words, parcellation schemes are not only related with
empirical data, but also simultaneously influencing simulated FC derived by the whole-brain
models that employed empirical data as a backbone. Therefore, it is difficult to understand how

brain parcellation schemes impact whole-brain dynamical modeling. For instance, our findings

95



in study 2, which was focusing on the impact of varying parcellation schemes, showed different
relationships between data variables of empirical connectome (FC and SC) and maximal GoF
values across individuals, i.e., inter-subject variability. Besides, the results also showed
different correspondences of maximal GoF values between the empirical data variables and
brain parcellation families, i.e., inter-parcellation variability. Although this dissertation does
not assert which parcellation scheme is generally optimal for whole-brain dynamical modeling
in the data-driven approach, these findings support the argument about the impact of data

processing of using different parcellation schemes on whole-brain dynamical modeling.
5.2 Optimal model parameters in data processing and analyses

Optimizing parameters of whole-brain models means searching for parameter values in the
parameter space (free parameters) corresponding to the model that gives the maximal GoF value
(or the minimal value of a loss function) against empirical data. Simulated data derived by the
optimal model can provide properties of whole-brain dynamics complying with the applied
model fitting (or applied objective function). Therefore, optimal model parameters can be
different when we consider various model fitting approaches, for instance, similarity between
simulated FC and empirical FC and similarity between simulated FC and empirical SC. With
this, whole-brain models with different optimal parameters can represent different dynamics of
simulated data depending on the applied model fitting. In the three studies of this thesis, we
considered a couple of model fitting approaches for whole-brain modeling and investigated

optimal model parameters in each case.
5.2.1 Optimal delay plays a role in varied tractography densities

In the literature of computational neuroscience, some researchers used whole-brain models

without delay in coupling for ultraslow BOLD dynamics (Deco et al., 2019; Ponce-Alvarez et

al., 2015). In study 1, we employed free parameters of delayed coupling between regions based

on empirical path lengths (the anatomical white-matter path lengths of streamlines between

brain regions) for the Kuramoto model (Kuramoto, 1984; Yeung and Strogatz, 1999) and

performed whole-brain dynamical modeling to find optimal couplings and delays. As a result,
whole-brain models with the optimal parameters (couplings and non-zero delays) exhibited
enhanced GoF values compared to the models with zero delays. Although structural architecture
showed similar tendencies of the graph-theoretical network properties across varied WBT
densities, the distributions of optimal delays differently behave when we use disparate

parcellation schemes via the model fitting to the empirical SC, i.e., searching for the maximal
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correspondence between empirical SC and simulated FC. Furthermore, the optimal model
parameters based on the different model fitting approaches can also play roles in distinct
behaviors between the two parcellation schemes. Consequently, varying WBT density can

reveal the changing distributions of optimal delays in whole-brain dynamical modeling.

In addition to the impact of varying WBT density on the distributions of optimal delays, the
optimal parameter values can also be related with apparent criteria for subject stratification. For
instance, stratified subjects based on different patterns of optimal delays showed discrete
maximal GoF values between the two distributions of optimal delays across WBT densities,
i.e., small delays (nearly zero) and large delays. Furthermore, we also observed that the optimal
delays have negative correlations with natural frequencies of oscillators corresponding to the
maximal spectral peaks (the most dominant frequency) of empirical BOLD signals of each
region. Therefore, the optimal signal propagation speeds of the model can be regulated by the
mean intrinsic temporal frequencies of oscillators of the brain regions. Consequently, structural
data processing parameters does not impact only optimal parameters but also reveals

relationships between subject stratification and whole-brain dynamical modeling.
5.2.2 Optimal parameter distributions in whole-brain models

In study 2, we also observed similar distributions of optimal model parameter points when we
use various parcellation schemes for whole-brain dynamical modeling using the model fitting

to empirical SC, and besides, we used two different whole-brain models, i.e., a coupled phase

oscillator model (Kuramoto, 1984; Yeung and Strogatz, 1999) and a coupled generic limit-cycle

oscillator model (Kuznetsov et al., 1998). As a result, by using the both models, we found that

the optimal model parameter points distribute in similar locations on the parameter space across
two model conditions (the phase oscillators and the generic limit-cycle oscillators) and different
parcellation schemes with regional granularity or region-probability conditions. On the other
hand, in study 3, we observed that optimal model parameter points corresponding to the
maximal GoF values were located in different hot spots from the results in studies 1 and 2 when
we applied a convolution-based (critically damped oscillators) two-population model (Jansen

and Rit, 1995; Lopes da Silva et al., 1974) for electrical neural responses. Moreover, the optimal

model parameters were located in a range where optimal delays are biologically feasible
(Caminiti et al., 2013). On the contrary, the other two models in the published studies 1 and 2

showed that the distributions of optimal model parameter values were almost zero delays via
the same model fitting approach, i.e., the model fitting to empirical FC. As a consequence of

the results, these studies of the thesis show a manifest effect of that using different whole-brain
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models can influence model-fitting results showing different distributions of optimal model
parameter points in whole-brain dynamical modeling. In addition, disparate whole-brain
models of mathematical or biophysical neural updates can result in different landscapes of
model-fitting values across data processing parameters. Consequently, using different types of
whole-brain models allows us to investigate the impact of data processing parameters on whole-

brain dynamical modeling.
5.2.3 Exploring parameters with model fitting approaches

Exploring a given free parameter space with several model fitting approaches can also provide
a way to reveal effective and latent simulated results for answering research questions. In light
of the unlimited number of whole-brain models with free parameters, exploring a landscape of
model-fitting values using different objective functions allows us to investigate the impact of
data processing parameters on whole-brain dynamical modeling in more details. For instance,
one model parameter point can be optimal in terms of revealing a pronounced difference
between subject groups, and another distinct parameter point can disclose relationships (e.g.,
correlation) between simulated data and behavioral measures. With this, we can also apply
varied data processing parameters for whole-brain dynamical modeling, and subsequently
simulated results can be influenced by the data processing conditions. By doing so, we can
show how the whole-brain dynamical modeling can be affected by varying data processing
parameters regarding model fitting approaches, which can reveal relationships between

simulated data and objective functions connected with research questions.

In study 3, we reported that optimal model parameter points were distributed in different areas
on the applied parameter space when we introduced a new model fitting approach compared to
the model fitting that we used in studies 1 and 2. The new model fitting searches for optimal
model parameter values corresponding to the maximal difference between healthy subjects and
patients with Parkinson’s disease. In addition to the different distributions of optimal model
parameter points, we found that using different parcellation schemes for whole-brain dynamical
modeling affects the distributions. With this, we showed that the simulated result derived by
the new model fitting leads to a better performance for patient classification. At the same time,
we also reported that the data processing parameters impact the classification performance.
Thus, we addressed that whole-brain dynamical modeling can exhibit different simulated
results via varying model fitting approaches with different objective functions. Furthermore,

we illustrated how simulated results can be utilized by varying data processing parameters.
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5.3 Personalized whole-brain modeling

In the previous sections, we discussed the impact of data processing on whole-brain modeling.
An intriguing point we have observed is that varying data processing parameters did not induce
the same inter-subject changes of simulated results in whole-brain dynamical modeling. In other
words, introducing data processing parameter conditions induces different simulated results
across subjects (inter-subject variability). Therefore, we can consider individualized optimal
data processing configurations, which give the best model fitting values for each subject. The
optimal data processing configuration, here, can be a personalized data processing for whole-
brain dynamical modeling. In this section, we discuss the impact of data processing on inter-
individual variability of model fitting as personalized modeling and show an example of clinical

applications.

In study 1, we reported the impact of varying WBT density on whole-brain modeling. We found
that subjects can be stratified via the following three criteria from data processing and model
fitting, and subsequently, the major subgroups throughout the stratification showed different
simulation results. First, the relationship between graph-theoretical network properties of
structural connectome in varied WBT densities allows us to split subjects into two groups that
are showing positive or negative correlations with the maximal GoF values. Second, we split
subjects into two groups based on the optimal delay profiles across WBT density conditions.
Third, we also split subjects into two groups that are showing positive or negative slopes of
maximal GoF values across WBT density conditions. With these criteria, we demonstrated that
the three steps with regard to the criteria for whole-brain dynamical modeling can involve the

impact of data processing in subject-specific manners.

In study 2, we also discussed inter-subject variability through varied parcellation schemes based
on relationships between maximal GoF values and empirical data variables. Furthermore, the
multiple linear regression showed that the empirical data variables are correlated with the
maximal GoF values of individuals. Although the results of the multiple linear regression of
empirical data variables estimated the maximal GoF values, in contrast, the contribution of the
empirical data variables was various in the results of each parcellation scheme. These results

clearly showed that choosing a parcellation scheme is crucial for inter-subject variability.

As a clinical application, in study 3, we varied functional data processing (different temporal
filters for empirical and simulated BOLD signals) with two parcellation schemes. With this, we

investigated the impact of the functional data processing on whole-brain dynamical modeling
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for patient classification of Parkinson’s disease. We examined classification performances
derived from the considered data processing conditions and showed that the performances
differed across the data processing conditions, i.e., temporal filtering and parcellation scheme
conditions. Furthermore, we suggested that the low-frequency bandpass filtering with multiple
parcellation schemes could be an advisable conditional configuration of whole-brain dynamical
modeling for classification of patients with Parkinson’s disease. Therefore, we assert that data
processing should be optimally configured for a better performance because data processing

impacts inter-subject variability, which induces different prediction performances.
5.4 Utilizing model fitting approaches for further analysis

Whole-brain simulation results in different dynamics across model parameters. In particular,
we observed that some ranges in a free parameter space depict apparent changes of model fitting
results when model parameters vary. Usually, one model fitting searches for the optimal model
parameter point in the parameter space as a single point. For instance, the neuroimaging model
fitting searches for the optimal parameters corresponding to the maximal GoF value, i.e., the
maximal similarity between empirical and simulated connectomes. This is a well-established
model fitting in the literature (Deco et al., 2015; Honey et al., 2009; Naskar et al., 2021).

However, whole-brain dynamical models with non-optimal model parameter points can also
reveal additional traits with different model fitting approaches for answering research questions.
For instance, when we use different objectives for whole-brain model fitting, it can show
different model parameter values as optimal ones. In studies 1 and 2, we have already shown
that different model fitting methods, i.e., similarity between empirical FC and simulated FC
and similarity between empirical SC and simulated FC, have different distributions of optimal
model parameters. Based on the subject-stratification results using the two neuroimaging model
fitting approaches in study 1, we suggested that applying multiple model-fitting methods can
be possible metrics to utilize whole-brain dynamical modeling. This way can also contribute to
a better understanding of whole-brain model fitting for personalized modeling. In other words,

we can utilize model fitting approaches for further analysis.

In study 3, we used the neuroimaging model fitting methods for the maximal correspondence
between empirical and simulated data. In addition, we introduced a novel model fitting
approach, termed behavioral model fitting, which searches for the optimal model parameter
points corresponding to the maximal group difference between healthy subjects and patients
with Parkinson’s disease. Through this, we again explored the parameter space and found

optimal points corresponding to the connectome relationships, which effectively answer the
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research question that we had, i.e., which model (parameter points) can show the largest effect
size for the group difference between healthy subjects and patients. As reported in study 3, we
found two hotspots of densely located optimal model parameters, where either neuroimaging
or behavioral model fitting is the most effective, although these hotspots did not coincide.
Therefore, we suggested that applying a proper model fitting approach allows us to find the
optimal parameters of whole-brain models for answering research questions. Consequently, we
used simulation data derived by whole-brain models with the optimal parameters to improve

the classification of patients with Parkinson’s disease.

The concept of the behavioral model fitting has a great potential for further applications. For
example, demographical or phenotypical properties can be used for this method, such as age,
sex, or group difference of cohorts. Of course, cognitive or clinical measures such as the
Montreal cognitive assessment, Mattis dementia rating scales, the unified Parkinson’s discase
rating scales are also applicable to search for the optimal model parameter points corresponding
to the strongest relationship with simulated results. The suggested concept of the model fitting
approach is similar to the brain mapping of various behavioral or phenotypical measures on the
cortical surfaces (Glasser et al., 2016; Huth et al., 2016; Raichle, 2009) and can thus be

generalized. Consequently, we can map the parameter space using cognitive or clinical scores,
which can be referred to as phenotypical mapping on the model parameter space like the

behavioral model fitting of the group difference that we scrutinized in study 3.

5.5 Conclusion

The thesis aims to disclose the impact of data processing on whole-brain dynamical modeling.
Due to the lack of ground truth of the human brain, neuroimaging studies of MRI have been
using a pipeline with study-specific data processing parameters for a given research question
or those from the literature, which has no consensus among studies. Therefore, | proposed the
study workflow of an MRI processing pipeline which is able to fully control data processing
parameters that can influence the empirical whole-brain connectome. With this, the hypothesis
here is that varying data processing parameters impact whole-brain dynamical modeling. In this
project, | verified the hypothesis by showing that conditional data processing with varied
parameter values impacts the results of whole-brain dynamical modeling. Accordingly, the
three performed simulation experiments in this dissertation delineate the proof of the concepts

of this assertion.
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The three studies in the dissertation focused on experimental conditions including structural
data processing, functional data processing, and model fitting approach. Furthermore, the
effects of these conditions can also intermingle because they are not independent but implanted
in the pipeline. In other words, to generalize the impact of data processing on the whole-brain
dynamical modeling, we should consider configurations of the conditions, which cover all
possible cases for data-driven approaches. At the same time, empirical and simulated results
across experimental conditions can differ. Moreover, the simulated results showed inconsistent
relationships via different model fitting approaches. For instance, GoF values or effect sizes of
group differences showed different landscapes across data processing conditions, such as the

varied WBT densities, temporal filters for BOLD signals, and brain parcellation schemes.

We can further infer that the data-driven approach provides subject-specific features across data
processing conditions and individual subjects, which implies inter-individual variability via the
whole-brain dynamical modeling. If we use the same data processing parameters for the entire
cohort of subjects, the optimal model parameter points can be found by a model fitting. Then,
the optimal model parameters can represent subject-specific variability. Furthermore, by using
different (or optimal) data processing configurations doing likewise in this project, we can also
enhance the subject-specific variability. Therefore, optimizing data processing parameters also
means that inter-individual variability goes to personalized whole-brain modeling. In other
words, to have the best fitting, each subject might need a subject-specific data processing as a
personalized pipeline. Hence, we can apply this attribute for subject stratification or subject
classification, as we showed in the published studies. Remarkably, the impacts of data
processing evidently differed across parcellation conditions. Thus, we should always consider
the impact of parcellation schemes that can make the inter-individual variability more
complicated. It does not mean that we need the best brain parcellation scheme, but we can
optimize a way of using parcellation schemes. For instance, we demonstrated in study 3 that
using multiple parcellation schemes provides complementing features of inter-individual

variability from each parcellation scheme.

Exploring a free parameter space for whole-brain dynamical modeling can provide a potential
way to answer research questions via using phenotypic or cognitive measures for model fitting.
Utilizing model fitting also allows us to investigate latent entities of whole-brain models via
model fitting with varying hidden model parameters. Then, we can delineate relationships
between the optimal hidden parameters and results of model fitting, which can be applied to

any kind of measures. Besides, the free parameter space has unlimited sizes. Thus, we should
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apply a systematic approach for whole-brain dynamical modeling. With varied data processing
and their impacts on the simulation results, this dissertation outlines the systematic data-driven
approach for whole-brain dynamical modeling. Conclusively, we can contribute to a better

understanding of the human brain and develop an advanced model for further applications.
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